
A0A10O 577 AERONAUTICAL SYSTEMS DIV WRIGHT-PATTERSON AFS OH F/8 1/3

AFSC STANDARDIZATION CONFERENCE, 1553, 1589. 1750. 1760, ADA, N-ETC(U)
NOV 80 E C 6ANGH S E SMITH

UNCLASgTFTFO AS0-TR-80-5050-VOL-2 NL

EhE////l/EE/I/
Illllllllllhl
IIIEIIIEEEEIII
EEIIIIIIIIIIEE
IIIEEIIIIIIII
EIIIIIIIIIIIII

U m a - I~, SDT6%%5

o AFSC
,STANDARDIZATION

,CONFERENCE2

1553 1589 17176O Ads,

NOVEMBER 18 - 20, 198 -
-rl

DAYTON CONVENTION ENTER. ,,,

DAYTN HjIO,.

.PROCEEDINGS H B'SPONSORED BY: " OSTED BY:

VOL, .OF, STANDARDS,

- APPROVED FOR PUBLIC RELEASE;

AIR FORCE DISTRIBUTION UNLMITED AERONAUTICAL
SYSTEMS COMMAND SYSTEMS DIVISION

C26 <~JJ8 6 24 282LI'1

11P' m

3O!ICE

Men @wnerinmt drawings, specifications, or other data are used for any
purpose other then in connection with a definitely related Government procure-
met operation, the United States Government thereby incurs no responsibility
nor any obligation whatsoever; and the fact that the goverment may have
formlated, furnished, or in any way supplied the said drawings, specifications,
or other data, is not to be regarded by implication or otherwise as in any manner
licensing the holder or any other person or corporation, or conveying any rights
or permission to manufacture, use, or sell any patented nvention that may in any
way be related thereto.

This report has been reviewed by the Information Office (01) and is releas-
able to the National Technical Information Service (NTIS). At NTIS, it will be
available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication,

ERWIN C. GANGL 0 LONG 17
Technical Advisor Technical Director (Actg)
Information Engineering Division Directorate of Avionics Engineering

ROBLIT P. LAVOIE, Colonel, USAF

Director, Avionics Engineering
Deputy for Engineering

"If your address has changed, if you wish to be removed from our mailing list,
or if the addressee is no longer employed by your organization, please notify
ASD/ENAI, W-PAID, OH 45433 to help us maintain a current mailing list".

Copies of this report should not be returned unless return is required by security
considerations, contractual obligations, or notice on a specific document.

AIR FORMUM3Aj1 Asfil 1"1 - 00 -

4 UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Owe Fnr,rd) WAIN'RCOS

REPORT DOCUMENTATION PAGE uAEJORE COMIPLIETING, I-MMR~

tIREPORT NUMBER 7. I~VT ACCEssION No. 3 RE'1IPIENT'S CAT ALOG NUMBER

ASDTITE -dS0-5t0 0 5 TYPE OF REPORT & PERIOD COVERED

Proceedings - StaI,,dards of the Avionics Vol 11 of II

Standardization Conirerence 18-20 November 1980

6. PERFORMING OIG. REPORT NUMBER

7. AUTHOR(.) 8. CONTRACT OR GRANT NUMBER(,)

Editors: Erwin C. Gangi
Stephen E. Smith

9 PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, T ALS

AREA & WORK UNIT NUMBERS

Hq ASD/ENAI

Wright-Patterson AFB, Ohio 45433

11 CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Hq AS/ENA18-20 November 1980

Wright-Patterson AFB, Ohio 45433 1 UBRO AE

14 MONITORING AGENCY NAME A ADDRESS(it different from, Contr~olling Office) 15 SECURITY CLASS, (of thI. report)

Sane as above. UNCLASSIFIED
15. DECLASSIFICATION DOWNGRADING

SCHEDULE

16. OISTRiBUTION STATEMENT -of Ih,, Repol)

Approved for public release; distribution unlimited.

17 DISTRIBUTION S1 ATEMENT tot the ahsfract entered In, Blok 20.if dift-nI f,.n, Nrp.,U)

N /A

IS SUPPLEMENrARY NOTES

N/A

19. KEY WORDS (Colinu, of nro lel. Ii ,czeo.,,y -d Idnnfify by bfolk non,nr

Computer Instruction Set Architecture, Multiplexing, Compilers, Support Soft-
ware, Data Bus, MIL-STD-I589, MTL-STD-1750, MIL-STD-1553, ML-STD-1760, Digital
Avionica , Systems Integration, Stores Interface, Standardization.

70 ABST PACT 'Conthton "n iS.~O ,d. it ne- y nd Ide-cify by block no,mh.,)

This is a collection of UNCLASSIFIED mul-standards to be distributed at the
AFSC Avionics Stndardization Conference at the Convention Center, Dayton,
01 O - Ihe pI1Irpo,:6 Of the confrorence is to state AF policy on standardization,
educate -governfpent. and industrv management, and present and demonstrate hard-
k'are nuid ifItarc tool'

DDIFN7C 43 DTONI NOV 65 IS OBSOLETEDD JN 7147 EDI1IO OFUNCLASSIFIED

4 SECURITY CLASSIFICATION OF THIS PAGE (*'h.n 0-r- En .d)1

ASD-TR-80-5050
Vol II of II

PROCEEDINGS, STANDARDS

OF THE

AFSC STANDARDIZATION CONFERENCE

Actesnton For

tDTT C, C
DC
U'm ~'~cd

18-20 NOVEMBER 1980

_'Vail 1-ii"Y Codes

Dis t Spcial

DAYTON CONVENTION CENTER

DAYTON, OHIO

RE: ASD-TR-80-5050, Vol. II
Use title on front cover per Mrs. Marie
Jankovich, ASD/ENIA

Approved for public release;
distribution unlimited.

Sponsored by: AIR FORCE SYSTEMS COMMAND

Hosted by: AERONAUTICAL SYSTEMS DIVISION

Organized by: DIRECTORATE OF AViONICS ENGINEERING (ASD/ENA)
AERONAUTICAL SYSTEMS DIVISION
AIR FORCE SYSTEMS COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433

FOREWORD

Air Force Systems Command sponsored two MIL-STD-1553 Multiplex Data
Bus Conferences, one in 1976 and one in 1978. In the past two years,
MIL-STD-1750 and MIL-STD-1589 have matured to the point of justifying

another conference. For the next three days we will provide an update
of MIL-STD-1553B, 1750A, 1589B, and also the status of the new MIL-STD-

1760, and the progress of the Ada programming language. Significant

interest in MIL-STD-1553B systems applications, LSI developments and

test equipment, as well as the publication of MIL-STD-1750A and 1589B
have prompted this Avionics Standardization Conference. Brig Gen Jacobs,

Deputy Chief of Staff, Plans and Programs, requested this conference,
being hosted by the Aeronautical Systems Division, Lt Gen Skantze,

Commander.

The purpose of the conference is to present Air Force standardizaticn
policy and the status of the military standards, to exchange data on lessons
learned from system applications, and to present new hardware/software de-

velopments in support of these standards.

This is the STANDARDS Volume, Volume II of the Standardization Conference.
Volume I will contain the proceedings and papers given during the conference,
which will be sent to attendees at a later date.

Many thanks to Captain David Herrelko (AFSC/XR) and Major Al Kopp
(AFSC/XRF) for their headquarter's assistance in organizing this conference;
also to the ASD/ENA staff who assisted in organizing the technical program,

proceedings and exhibits, Mr. Stephen Smith and Mr. Erwin Gangl. Special
thanks to Mr. Joseph Militello (University of Dayton Research Institute)
who did an outstanding job in organizing the conference facilities, hotel
accommodations and food service.

Thanks also to the moderators and all the speakers who responsed with
outstanding presentations and papers in a timely manner despite such short
notice. And, finally to the secretaries, Mrs. Marie Jankovich, Mrs. Kathy
Hayes, and Mrs. Sharleen Thompson for their expert administrative help in
handling the conference correspondence and registration.

ROBERT P. LAVOIE, olonel, IUSAF

Director, Avionics Enginuertng

Deputy for Engineering

- iii -

i

____ _ D: PR FUNF() TlllIL Alf? 1 7IRCE
ff(AI)QI0A1 I I 11 , Alf- P.' g 1 -, t .1M ClAiM A t4 0

A N D H LV S AMl P OSIC- IAftl, f)(: 71,114-

2 9 APK 190

- AIL-S'I- 17S0 (USAF) Instruction Set Architecture Conference

T O AS[D/%CV

1. We are impressed with your significant technological progrcs. in
develop ing and imp l entent ing our Airborne Computer In'.truction Set
Architecture, MIl -STD- 17SO(USAF). l'ht team, work of MIVD/AX, t.SD/I:N and
the AFWAL/AA has been a key factor in this stcces.;ftul effort. The
enthusiastic industry-wide response to ',iis standardization initiative
attests to the soundness of the approach. With over a dozen ,con-
tractors implementing the 1750 architecture, aind with the strong initer-
est being sho%,n by systems houses and airfrase manni acturers, the time
seems right for a conference devoted to MIL-STD-17S0.

2. We request you host such a confercnce, in conjunction with the Fall
meetings of the MIL-STD-1750 IU-ers (,rou!) and the .I,-7fI)-l Y50 Controi
Board, which we understand will be hl,1! at 'riight-Patterson Air Force
Base. This seems an excellent time to demonstrate actual I.orking hard-
ware, to exchange information throu,h presen-ations and a published
proceedings of the conference, and !o ,how off EN's SFAFAC facility,
which has a central role in MIL-SfIf-1750 verificatioti.

3. The AFSC project officer for this effort, Captain David A. Icerrelko
(AFSC/XRF), AUTOVON 858-5731, is prepared to provide vou vith any
assistance you might need in arranging this conftrcncc.

FOR TIHE CONI IR -DL-

Cy to: A41,,X

AFSAI/ I ,
A 1: VA 1,/' PA

.ig Gen, USAF AISC/DL

1"il ; mmd lrogllmi

- iV-

r

CEPARTMENT OF THE AIR FOF,(;F Au1 ; ,
HEA (I A tL* I JT (n A E FO A(J IA I 1 , 5= F~* T r. m ('3f VI s &vw-r.mf fr/ A F S 1

wilTT.AT TeRSON AIRil ronC SASE OHIO 4543L -T170SA

AtTT" OF: EN

SSeJECT, AFSC Standardization Conferenence

AFSC/XR

1. Reference your letter of 29 April 1980, Subject: MIL-STD-1750(USAF)

Instruction Set Architecture Conference. ASD/EN took on the task to

support the MIL-STD-1750 conference. We had originally planned to

schedule this conference for mid-September. For a variety of reasons,
we elected to expand the scope ot this conference to cover all current
AFSC standardization initiatives and issues. We have discussed this
with ASD/AX and ASD/XR and have jointly agreed to separate the 1750
Technical Users' Group meeting from the broader aspects of the conference.

Whave tentatively rescheduled it for the period of 18 th~roughl 20 November

and plan to include MIL-STDs-1750A, -1589,-1553B, and -1760.

2. We believe it would be more effective to target such a conference to
SPO level managers and engineers and their counterparts in industry, in
order to facilitate application of these standards to specific programs.
We want to make it an educational rather than a technical symposium. This
will afford us the opportunity to present our perception of the benefits
we expect from incorporating the standards; present the status of key
efforts supporting each of these; and present lessons learned to date
where we have had some actaal experience in applying them. We will alo.
plan to address DOD standardization policy where it applies and will pro-
vide the opportunity for Headquarters personnel to make inputs aJdressing
specific USAF and AFSC intentions. We also intend to provide our people
some insight into foreign applications of our military standards.

3. 1 would appreciate your support of this conference and your concurrence
that this approach will satisfy your original request. The Directorate of
Avionics Engineering, ASD/ENA, will run the show for ASD. Our project
officers are Mr. Erwin C. Gangl, ASD/ENAI, Autovon 785-4865 and
Mr. Stephen Smith, ASD/ENAIB, Autovon 785-2248. They are prepared to
provide your staff with any information they may need or wish to have
relative to the details of the conference.

..........................

l T I

'4

-Z-

ItA I I I A I 1 I M I J -I I I I r 0 I 1' 1)/,

ever V It I A IVV * 1 1,1"1A I I I I r 1 1,~ r i . a VI

fifCt n/ 1),e()mfjrr 17 October 1980

SUBIJECT: AFSC Avionics Standardization Conference, 18S 20 November 1990)

TO: CONFERENCF ATTrNoD.ES

1. The Apronatitical System,; Division is orgainizing, and boti.,r, a

conference on Avionics Staindairdizit ion nt the Dayton Convetiin
Center, 18 - 20 Noembe~r 1980. 1hi~s conferenice will addrccq Air
Force Avionics Stamd.-rd17..1t~ron Policy, the st.atus of 1 TI[.-STI-1553
(hultIplexed Datai Btis), fiIl,-STD-175() (Compuiter in'ztruction See
Architectitre) , H~,S 59(.173 1 C1her Oruier Lanw'tapo) , urn-
1760 (Atrcraft to Stores Elve-trical1 Interface), and -the progress

of the new IntertiaL onal IHigher Order Lnguage V Ada.*

2. We have tat Eotcd thi 0rre'~Vr~InOS n 'lgV''

thr! Syntcms; Frogrram Officee ~ir'op~ h~t to' facll:V

the aplicatioen of ti ~r~ ctinnrd Ice Air rrce fprrs'-. P"'

V u~idcrst'incilnr and a;'prue-iat ion of the benuef its to be gainoed ft oM,

applying these standards.

3. We plani ,o maime it- an eotonlrttefr tioV, \V'

tlum. Ti I wIII i afford u i .- , n Cj It m ~Iv % I pr O~~ ~ I p c r1I'1

of theI hnel rlt I~e P'm 1 'rt from 1-' 'lipnrtft 1ir , Slall ti it '. r-1,

lpearned to date whore 'je l-iVE liI' -;om, nctiml ex;'er I 0
ce Io irrt'IN !-P

them. We will ;ilsoo to al~r's10)stand~irdI7.)tlot(' -']
1 i" s 'rrr

it applies, 1tii1 willI provide the olpp' rtiity fnr 11eidqnar e'r' Vrersoil-

no I to make input s a id '.ss I o 'r i ic 11SAF aind AFSC ltet ni. In
1aiditiOn, We will, plOvillf t''h~ so1mV illSOIg ititn fnologn 1uicep-

tance and syst~m applications of there military standard-,.

4 . A mifuniI ,it ul Lt,,- o. f-f C ~(jl,.u W 11 ' ri-1 fl'l

will receivye a comp I imeult ccv cocpy (if the pro' red 111,-,'

I7t,

~ug?/'

PROCEEINGS

STANI)ARDIUZA1 ON CONFIRENCE

18-20 NOVEMBER 1980

DAYFON, OHIO

Page

MTL-STD-1553B, 21 Sept 78, Aircraft Internal Time 1
Division Command/Response Multiplex Data Bus

MIL-STD-1589B, 6 June 80, JOVIAL (J73) 45

MIL-STD-1750A, 2 July 80, Sixteen-Bit Computer 223

Instruction Set Architecture

MIL-STD-1760 (DRAFT), May 80, Standard Store Interface, 381
Aircraft/Stores Electrical Interface Definition

Ada Programming Language 471

-vi i

MIL-STD- 1553B
21 Segtember 1Q78
SUPERSEDING
MIL-STD-1 553A
30 Apri1 1975

MILITARY STANDARD

AIRCRAFT INTERNAL TIME DIVISION

COMMAND/RESPONSE MULTIPLEX DAIA BUS

1 FSC MISC

MIL-SID-1553h

21 September, 19'.'8

I FP'A I1lMEN'I iFY 1H' k.K-E

Aircraft Internal Time Fivision 'command/Hespionse Multiplpx bata Bus

MIL-STD-1553B

1. This Military Standard is approved tor ine ty all Depar'tment and Agencies
of the Department of Defense.

2. beneficial comments (recommendations, z..ditions, deletions) and any
pertinent data whieh may be of use in improving this document should be
addressed to: Aerunautical Systems ivisIon, Ait: ENAl, Wright-Patterson Air
Force base 45433, by using the self addressed 't.ariuar'dizatijro Document
Improvement Proposal (ND Form 1426) appearing at the end ,t tnis document or Uy
letter.

_..,!

hi I L-STD- 1 553b

21 September-1~!

"IIIis st andarA 0 'HtH jIl' reqiremnrts fu1r a ircra f 1,1rite rria I t 1me di vis-91on,
coNmand, response mut t ip1ex data bus te!hriques wb ion wit I I e utilIized in
systems integration of aircraft subsysltemts. Even with thne use of this
standard , subtle diffterenices will exist between multiplex data busts . used on
dif'ferent aircraft dut- t(. particular aircraft mi6:;iori requirements and the
designer options allowed in thbis standard. 1he! system designer roust recognize
this fact and design the multiplex bus controller hardware and software to
accommodate such differences. These designer- selected optionsI (Dust exist, so
as to allow the necessary flexibility in the design of specific multiplex
systems in order to provide for the control mechanism, architecture re, 'dancy,
degradation concept and traffic patterns peculiar to the specific aircraft
mission requirements.

IL-STD-1 553b
21 September 1978

CONTENTS

Paraeran hum

1. SCOPE

1.1 Scope 1
1.2 Application 1

2. REFERENCED DOCUMENTS 1
2.1 Is3ue of Document 1
3. DEFINITIONS

3.1 Bit 1
3.2 Bit Rate 1
3.3 Pulse Code Modulation (PCM) 1
3.4 Time Division Multiplexing (TDM) 1
3.5 Half Duplex 1
3.6 Word 1
3.7 Message 3
3.8 Subsystem 3
3.9 Data Bus 3
3.10 Terminal 3
3.11 Bus Controller 3
3.12 Bus Monitor 3
3.13 Remote Terminal (RT) 3
3.14 Asynchronous Operation 3
3.15 Dynamic Bus Control 3
3.16 Command/Response 3
3.17 Redundant Data Bus 3
3.18 Broadcast 3
3.19 Mode Code 3

4. GENERAL REQUIREMENTS 4

4. 1 Test and Operating Requirements 4
4.2 Data bus Operation 4
4.3 Characteristics 4
4.3.1 Data Form 4
4.3.2 Bit Priority 4
4.3.3 Transmission Method 4
4.3.3.1 Modulation 4
4.3.3.2 Data Code 4
4.3.3.3 Transmission Bit Rate 4
4.3.3.4 Word Size 4
4.3.3.5 Word Formats 4
4.3.3.5.1 Command Word 8
4.3.3.5.1.1 Sync 84.3.3.5.1.2 Remote Terminal Address 8

4.3.3.5.1.3 Transmit/Receive 8
4.3.3.5.1.4 Subaddress/Mode 8
4.3.3.5.1.5 Data word Count/Mode Code 8
4.3.3.5.1.6 Parity 8
4.3.3.5.1.7 Optional Mode Control 8
4.3.3.5.1.7.1 Dynamic bus Control 9

iv

4

MIlL-iTD- 1553b421 September 1978

(_'()N'I .NIS- k -,nt '41

4.3..5.1 .7.2 :;yrphi,,niz,. (W'trout Data Wrd) 9
4.3. .5.1.7.3 'Transmit. :.tat., W,rd 9
4..3.5.1.7.4 Initiate ';,,i1 Test 9

4.3..5.1 .7.5 Ty angm t t i,' ;hudown 9
4.3.3.5.1 .7.6 Uv,.rrid,. Tranamitter Shutdown 9
4.3.3.5.1.7.7 Inhibit i'/F hit 9

4.3.3.5.1.7.8)verrid- InhibiL T/ bit. 9
4.3.3.5.1 .7.9 f,-set lm te Trmi na1 9

4.3.3.5.1.7.10 ieservvd M,de (,)des (01001 to 01111) 9
4.3.3.5.1.7.11 Tranmit Vet_r Word 11
4.3.3.5.1.7.12 SynchrrdIze (With Data Word) 11
4.3.3.5.1.7.13 Transmit Last Comnand Word 11
4.3.3.5.1.7.14 Transmit built-In-Tegt (BIT) Word 11
4.3.3.5.1.7.15 Se.lected Transmitter Shutdown 11
4.3.3.5.1.7.16 Override Sele'ted Transmitter Shutdown 11
4.3.3.5.1.7.17 Reserved mode Codes (10110 to 11111) 11
4.3.3.5.2 Data Word 11
4.3.3.5.2.1 Sync 11
4.3.3.5.2.2 Data 12
4.3.3.5.2.3 Parity 12
4.3.3.5.3 Status W(ord 12
4.3.3.5.3.1 Sync 12
4.3.3.5.3.2 HT Address 12
4.3.3.5.3.3 Message Err,,r Bit 12
4.3.3.5.3.4 Instrument ation Bit 12
4.3.3.5.3.5 Service Request Bit 12
4.3.3.5.3.6 Reserved Status Bits 12
4.3.3.5.3.7 Broadcast Command Received Bit 13
4.3.3.5.3.8 Busy Bit 13
4.3.3.5.3.9 Subsystf.m Flag Bit 13
4.3.3.5.3.10 Dynamic Bus Control Acceptance Bit 13
4.3.3.5.3.11 Terminal Flag Bit 13
4.3.3.5.3.12 Parity Bit 13
4.3.3.5.4 Status W)I d Reset 13
4.3.3.6 Message F. rmats 13
4.3.3.6.1 Bus controller to Remote Terminal Transfers 14
4.3.3.6.2 Remote Terminal to Bus Controller Transfers 14
4.3.3.6.3 Remote Terminal to Remote Terminal 14

Trans -frs
4.3.3.6.4 Mode Command Without Data Word 14
4.3.3.6.5 Mode C,,mmand With Data Word (Transmit) 14
4.3.3.6.6 Mode C,,mm;jnd With Data Word (Receive) 14
4.3.3.6.7 o)tional br iadoast Cmmand 14
4.3.3.6.7.1 bus c,)ntr,, br to Rem ete Terminal(s) 14

Transfer (Broadeast)
4.3.3.6.7z2 Rtemite Terminal to Remste Terminal(s) 17

Transf.r (Broadnast)
4.3.3.6.7.3 Mode Command Without Data Word (Broadcast) 17
4.3.3.6.7.4 Mode Command With Data Word (Broadcast) 17
4.3.3.7 Intermessag- Gap 17
4.3.3.8 Revsp.)nse Timf, 17

V

5

.I Se~Lemoer 1lb

I N FNI: ((':; t'dJ

4. .3.9 Mirk imum No-hesp, nse I1 me-out 17
4. 4 1ermiirial toperation 17
4. 4. 1 tommoM Operation 17

4. 4. 1. 1 Word Validation 21
4.4. 1.? 'lransmission Continuity 21
4.4. 1. 3 lerminal Fail-Safe 21
4.4.2 bus Controller Operation 21
4.4.3 hemote Terminal 21
4.4.3.1 Operation 21
4.4.3.2 Superseding Valid Commands 21
4.4.3.3 Invalid Commands 21
4.4.3.4 illegal Command 21
4.4.3.r Valid Data Reception 22
4.4.3.6 Invalid Data Reception 22
4.4.4 Bus Monitor Operation 22
4.5 Hardware Characteristics 22

4.5.1 Data Bus Characteristics 22
4.5. 1.1 Cable 22
4.5.1.2 Characteristics Impedance 22
4.5. 1.3 Cable Attenuation 22
4.5. 1.4 Cable Termination 22
4.5.1.5 Cable Stub Requirements 22
4.5.1.5.1 Transformer Coupled Stubs 23
4.5.1.5.1.1 Coupling Iransformer 23
4.5.1.5. 1.1.1 Transformer input impedance 23
4.5.1.5.1.1.2 Transformer Waveform Integrity 23
4.5.1.5.1.1.3 Transformer Common Mode hejection 23

4.5. 1.5. 1.2 Fault isolation 23
4.5.1.5.1.3 Cable Coupling 23
4.5.1.5.1.4 Stub Voltage Hequirements 23

4.5.1.5.2 Direct Coupled Stubs 23
4.5. 1.5.2.1 Fault isolation 23
4.5. 1.5.2.2 Cable Coupling 25
4.5. 1.5.2.3 Stub Voltage Requirements 25
4.5.1.5.3 Wiring and (abling for LHC 25

Terminal Cnaracteristics 25
4.5.2. 1 lerminals With Transformer Coupled Stubs 25
4.5.2.1.1 leminal output Characteristics 25
4.5 .2.1.1.1 Output Levels 25
4.5.2.11.2 Output Waveform 25
4.5.2.1.1.3 Output Noise 25
4.5. .1.1.4 Output Symmetry 25
4.5.2.1.2 Terminal Input Characteristics 25
4.5.2. 1.2. 1 Input Waveform Compatibility 27
4.5.2.1.2.2 Common Mode Hejection 27
4.5.2. 1.2.3 Input Impedance 27
4.5.2.1.2.4 Noise hejection 27
4.5.2.2 lerminals With Direct Coupled Stubs 27
4.5.2.2. 1 lerminal Output Characteristics 27
4.5.2.2.1.1 Output Levels 27
4.5.2.2.1.2 Output Waveform 29

vi

MIL-STD-1553B
21 September 1978

CONTENTS (Cont'd)

4.5.2.2. 1.3 Output Noise 29
4.5.2.2.1.4 Output Symmetry 29
4.5.2.2.2 Terminal Input Characteristics 29

4.5.2.2.2.1 Input haveform Compatibility 29
4.5.2.2.2.2 Common Mode Rejection 29

4.5.2.2.2.3 Input Impedance 29

4.5.2.2.2.4 Noise Rejection 29

4.6 Redundant Data bus Hequirements 30

4.6.1 Electrical Isolation 30

4.6.2 Single Event Failures 30

4.6.3 Dual Standby Redundant Data bus 30

4.6.3.1 Data Bus Activity 30

4.6.3.2 Reset Data bus Transmitter 30

5. DETAIL REQUIREMENTS
30

vii
7

L..-.]__

p

KIL-STD-1553B
21 September 1978

LamaU A&

FIGURES

I Sample Multiplex Data Bus Architecture 2
2 Data Eneuding 5
3 Word Formats 6
4 Command and Status Sync 7
5 Data Sync 7
6 Information Transfer Formats 15
7 Broadeast Information Transfer Formats 16
8 Intermessage Gap and Response Time 18
9 Data Bus Interface Using Trans. Coupling 19
10 Data Bus Interface Using Direct Coupling 20
11 Coupling Transformer 24
12 Terminal I/0 Characteristics ror 24

Transformer Coupled and Direct Coupled
Stubs

13 Output Waveform 26

TABLES

I Assigned Mode Codes 10
II Criteria for Acceptance or Rejection 28

of a Terminal for the Noise Rejection
Test

APPENDIX

10 General 31
10.1 Redundancy 31
10.2 Bus Controller 31
10.3 Multiplex Selection Criteria 33
10.4 High Reliability Requirements 33
10.5 Stubbing 33
10.6 Use of Broadcast Option 34

APPENDIX FIGURES

10.1 Illustration of Possible Redundancy 32
10.2 Illustration of Possible Redundancy 32

viii

8

MIL-STD-1 553B
21 September 1978

1. SCOPE

1. 1 Sco[)e. This standard establishes requirements for digital,
command/response, time division multiplexing (Data bus) techniques on aircraft.
It encompasses the data bus line and its interface electronics illustrated on
figure 1, and also defines the concept of operation and information flow on the
multiplex data bus and the electrical and functional formats to be employed.

1.2 Apicatio. When invoked in a specification or statement of work, these
requirements shall apply to the multiplex data bus and associated equipment
which is developed either alone or as a portion of an aircraft weapon system or
subsystem development. The contractor is responsible for invoking all the
applicable requirements of this Military Standard on any and all subcontractors
he may employ.

2. REFERENCED DOCUMENTS

2.1 Issue of document. The following document, of the issue in effect on date
of invitation for bid or request for proposal, forms a part of the standard to
the extent specified herein.

SPEC IF ICAT ION

MILITARY

MIL-E-6051 Electromagnetic Compatibility Requirements, Systems

(Copies of specifications, standards, drawings, and publications required by
contractors in connection with specific procurement functions should be

* obtained from the procuring activity or as directed by the contracting
officer.)

*3. DEFINITIONS

3.1 Contraction of binary digit: may be either zero or one. In
information theory a binary digit is equal to one binary decision or the
designation of one of two possible values or states of anything used to store
or convey information.

*3.2 bi ae The number of bits transmitted per second.

3.3 Pulse code modulation CPUM). The form of modulation in which the
modulation signal is sampled, quantized, and coded so that each element of
information consists of different types or numbers of' pulses and spaces.

3.54 Time division multiplexing (TDM). The transmission of information from
several signal sources through one communication system with different signal
samples staggered in time to form a composite pulse train.

3.5 11al.'dupolex. Operation of a data transfer system in either direction over
a single line, but not in both directions on that line simultaneously.

3.6 bLN In this document a word i3 a sequence of 16 bits plus sync and
parity. There are three types of words: command, status and data.

M IL.-S'I D- 155 b
21i September 1978

M z

CI A

I0 (--4-- -

Ln X 0

I CIS

I A-H

go 04

10 O l

4 MIL-STD-1 553B
21 September 1978

3. 7 Me1saa. A single message is the transmission or a command word, status
word, and data words if they are speciftied. For the case of a remote terminal
to remote terminal (RT to HiT) transmission, the message shall include the two
command words, the two status words, arid data words.

3.8 Subsyste &. The device or functional unit receiving data transfer service
from the data bus.

3.9 Dat bu.Whenever a data bus or bus is referred to in this docuent It
shall imply all the hardware including twisted shielded pair cables, isolation
resistors, transformers, etc., required to provide a single data path between
the bus controller and all the associated remote terminals.

3. 10 Tinal The electronic module necessary to interface the data bus with
the subsystem and the subsystem with the data bus. Terminals may exist as
separate line replaceable units (LRU's) or be contained within the elements of
the subsystem.

3.11 b~us controller. The terminal assigned the task of initiating information
transfers on the data bus.

3. 12 Bu ontr The terminal assigned the task of receiving bus traffic and
extracting selected Information to be used at a later time.

3.13 Remote terminal UMiT. All terminals not operating as the bus controller
or as a bus monitor.

3.14I Asynchronous operation. For the purpose of this standard, asynchronous
operation is the use of an independent clock source in each terminal for
message transmission. Decoding is achieved in receiving terminals using clock
information derived from the message.

3.15 Dynamic bus control. The operation of a data bus system in which
designated terminals are offered control of the data bus.

3.16 Command/Response. Operatior if a data bus system such that remote
terminals receive and transmit data only when commanded to do so 1)y the bus
controller.

3. 17 igsjm~ant daabs The use of more than one data bus to provide moreI
than one data path between the subsystems , i .e. , dual redundant data bus ,
tn-redundant data bus, etc.

3. 18 broacas. Operation of a data bus system such that information
transmitted by the bus controller or a remote terminal is addressed to more
than one of the remote terminals connected to the data bus.

3.19 Mode cod. A means by which the bus controller can communicate with the
multiplex bus related hardware, in order to assist in the management of
information flow.

3

MIL-STD-1553b
21 September 1978

4. GENERAL REQUIREMENTS

4.1 Test and operatingl reguirements. All requirements as specified herein
shall be valid over the environmiental conditions which the multiplex data bus
system shall be required to operate.

4.2 Data bus operatio . The multiplex data bus system in its most elemental
configuration shall be as shown on figure 1. The multiplex data bus system
shall function asynchronously in a command/ response mode, and tranlsmission)
shall occur in a half-duplex manner. Sole control of information transmnission
on the bus shall reside with the bus controller, which shall initiate all
transmissions. The information flow on the data bus shall be comprised of
messages which are, in turn, formed by three types of words (command, data, and
status) as defined in 4.3.3.5.

4. 3 Characteristics

4.3.1 D~ataL.LQ. Digital data may be transmitted in any desired form,
provided that the chosen form shall be compatible with the message and word
formats defined in this standard. Any unused bit positions in a word shall be
transmitted as logic zeros.

4.3.2 Bit priiy. The most significant bit shall be transmitted first with
the less significant bits following in descending order of value in the data
word. The number of bits required to define a quantity shall be consistent
with the resolution or accuracy required. In the event that multiple precision
quantities (information accuracy or resolution requiring more than 16 bits) are
transmitted, the most significant bits shall be transmitted first, followed by
the word(s) containing the lesser significant bits in numerical descending
order. Bit packing of multiple quantities in a single data word is permitted.

4.3.3 Transmission method

4.3.3.1 Modulation. The signal shall be transferred over the data bus in
serial digital pulse code modulation form.

4.3.3.2 Daacoe The data code shall be Manchester 11 bi-phase level. A
logic one shall be transmitted as a bipolar coded signal 1/0 (i.e., a positive
pulse followed by a negative pulse) . A logic zero shall be a bipolar coded
signal 0/1 (i .e.*, a negative pulse followed by a positive pulse) . A transition
through zero occurs at the midpoint of each bit time (see figure 2).

4.3.3.3 Transmission bit rate. The transmission bit rate on the bus shall be
1.0 megabit per second with a combined accuracy and long-term stability of
0.1 percent (i.e., t 1000 Hertz (Hz)). The short-term stability (i.e.,

* stability over 1.0 second interval) shall be at least 0.01 percent (i.e., 100
Hz).

4.3.3.4 ktrd ize. The word size shall be 16 bits plus the sync waveform and
the parity bit for a total of 20 bits tines as shown on figure 3.

4.3.3.5 Word forMats. The word formats shall be as shown on figure 3 for the
command, data, and status words.

4

12

MIL-STV- 1 553b
21 September 1978

C>

CD'

C4

ii--
+ 0+ 0

13

21 t;eptember 1978

o PAV ITY

' ,_ TFRMINAL FL.AG

CC - IYNAMIC BUS CONTROL ACCEPTANCE

: - SUBSYSTEM FLAG

i: ~BROA)CAST COMMAND RECEIVED

-14

C CA -4 SERVICE REQUEST 'no

INSTRUMENTATION

-4 . MESSAGE ERROR

F-4-

6

14

II. -, JI .
L~ U I I II UIIU ,-

M I L-STD-1 553b
21 September 1978

+ VOLTS .--- [~1

0

*VOLTS 1

DATA WORD SYNC DATA
BIT BIT

FIRURE 4. Command and s tatussyc

VOLTS -- ~~

F77
VOLTS __BI

DATA Wf IRI SYNC DATA
BiIBI

Ff(1'I. fa-t ai synlc

15

M IL-STD- 1553B
21 September 1978

4.3.3.5.1 CQoIIn word. A command word shall be comprised of a sync waveform,

remote terminal address field, transmit/receive (T/H) bit, subaddress/mode

field, word count/mode code field, and a parity (P) bit (see figure 3).

4.3.3.5.1.1 3. The command sync waveform shall be an invalid Manchester

waveform as shown on figure 4. The width shall be three bit times, with the

sync waveform being positive for the first one and one-half bit times, and then

negative for the following one and one-half bit times. If the next bit

following the sync waveore is a logic zero, then the last half of the sync

waveform will have an apparent width of two clock periods due to the Manchester

encod ing.

4.3.3.5.1.2 imLan LUfin Add.L=. The next five bits following the syno

shall be the AT addre~s. Each HT shall be assigned a unique address. Decimal

address 31 (11111) shall not be assignee as a unique address. In addition to

its unique address, a AT shall be aisigned decimal address 31 (11111) as the

common address, if the broadcast option is used.

4.3. 3.5.1.3 Tran-mit/receiif. The next bit following the remote terminal

address shall be the T/R bit, which shall indicate the action required of the

RT. A logic zero shall indicate the HT is to receive, and a logic one shall

indicate the RT is to transmit.

4.3.3.5.1,4 Subaddress/mode. The next five bits following the R/T bit shall

be utilized to indicate an AT subaddress or use of mode control, as is dictated

by the individual terminal requirements. The subaddress/mode values of 00000

and 11111 are reserved for special purposes, as specified in 4.3.3.5.1.7, and

shall not be utilized for any other function.

4.3-.3.5.1.5 Data word eourtL/ode code. The next five bits following the

subaddress/mode field shall be the quantity of data words to be either sent out

or received by the RT or the optional mode code as specified in 4.3.3.5.1.7. A

maximum of 32 data words may be transmitted or received in any one message

block. All I's shall indicate a decimal count of 31, and all O's shall

indicate a decimal count of 32.

4.3.3.5.1.6 ParitL. The last bit in the word shall be used for parity over

the preceding 16 bits. Odd parity shall be utilized.

-4.3.3.5.1.7 Outlonal mode control. For AT's exercising this option a

subaddress/mode code of 00000 or 11111 shall imply that the contents of the

data word count/mode code field are to be decoded as a five bit mode command.

The mode code shall only be used to communicate with the multiplex bus related

hardware, and to assist in the management of information flow, and not to

extract data from or feed data to a functional subsystem. Codes 00000 through

01111 shall only be used for mode codes which do not require transfer of a data

word. For these codes, the T/R bit shall be set to 1. Codes 10000 through

11111 shall only be used for mode codes which require transfer of a silngledata

word. For these mode codes, the T/R bit shall indicate the direction of data

word flow as specified in 4.3-. .5.1.3. No multiple data word transfer shall be

implemented with any mode code. The mode codes are reserved for the specific

functions as specified in table I and shall not be used for any other purpose.

If the designer chooses to implement any of these functions, the specific

16

MIL-STD- 15531
21 September 1978

codets, T/ bit assigrimt.rit, aril, Use ,'" a gala w.)f(, shall be used as indicated.
The use of the broadoast ('.)mmand o)pti,,n 4hall rly bfe applied to particular
mode codes as sperified in tabi, 1.

4.3.3.5.1.7.1 Dynmic_ tsuq _nOilr21. The ',ntroller shall issue a transmit
command to an HT capable of per'formirn the, bus (ontr)l function. This RT shall
respond with a status wor(d a4 speeiried in 4.1. '.5.3. Control or the data bus
passes from the offering bus oonttroller to thi aoco pting RT upon completion of
the transmission of the status word by the HT. If the RT rejects control of
the data bus, the offering bug ontroller retains eontrol of the data bus.

4.3.3.5.1.7.2 SvnchrunLz & i W- AJ -d Asa worLud -J. This command shall cause the
RT to synchronize (e.g., to reset the internal timer, to start a sequence,
etc.). The RT shall transmit the status word as specified in 4.3.3.5.3.

4.3.3.5.1.7.3 TIran L Thig command shall cause the RT to
transmit the status word ass(oiated with the l.ast valid command word preceding
this command. This mode command shall not altfr the state of the status word.

4.3.3.5.1.7.4 Initiatee.itest. This command shall be used to initiate self
test within the RT. The RT shall transmit the status word as specified in
4.3.3.5.3.

4.3.3.5.1.7.5 Trianmitter shutdown. This command (to only be used with dual
redundant bus systems) shall cause thei mT to disable the transmitter associated
with the redundant bus. The RT shall not comply with a command to shut down a
transmitter on the bus from which thig oonmand is received. In all cases, the
RT shall respond with a status word as specifi,,d in 4.3.3.5.3 after this
command.

4.3.3.5.1.7.6 Override transmitter shutdown. This command (to only be used
with dual redundant bus system) shall nauae the RT to enable a transmitter
which was previously disabled. The RT shall not comply with a command to
enable a transmitter on the bus fr.)m wnich this command is received. In all
cases, the RT shall respond with a status word as specified in 4.3.3.5.3 after
this command.

4.3.3.5.1.7.7 Inhibit terminal Lia (1F) bit. This command shall cause the
RT to set the T/F bit in the status word specified in 4.3.3.5.3 to logic zero
until otherwise commanded. The HT shall transmit the status word as specified
in 4.3.3.5.3.

4.3.3.5.1.7.8 Override LU L b . This command shall cause the RT to
override the inhibit T/F bit spp-ified in 4.3. 3.5.1.7.7. The RT shall transmit
the status word as specified in 4.3.5..3.

4.3.3.5.1.7.9 1LsetrmLuUterminal. Thiq e)mmand shall be used tu reset the
RT to a power up initializd state. The AT shall first transmit its status
word, and then reset.

4.3.3.5.1.7.10 He-seryedu o,.,j(ljA21._Q i1 . These moda codes are
reserved for future use and shall not be used.

9

17

M IL-STU-1 5L)3[4

21 Septem~ber 1976

TABLE 1. Assignied mode codes

Assoc ta ted Broadcast
IL&bi Moe odLw .tQnkQ DaIL1(QL Command Allowed

1 00000 Dynamic bus Control No NO

1 00001 Synchronize No Yes

1 00010 Transmit Status Word NO NO

1 00011 Initiate Self Test NO Yes

1 00100 Transmitter Shutdown NO0 Yes

1 00101 Override Transmitter Shutdown NO Yes

1 00110 Inhibit Terminal Flag bit No Yes

1 00111 Override Inhibit Terminal Flag bit No Yes

1 01000 Reset Remote Terminal NO Yes

1 01001 Reserved No TBD

1 0111 Rsrved NoTD

1 10000 Transmit Vector Word Y0s NO

0 10001 Synchronize Yes Yes

1 10010 Transmit Last Command Yes No0

1 10011 Transmit BIT Word Yes No

0 10100 Selected Transmitter Shutdown Yes Yea

0 10101 Override Selected 'lransmitter Yes Yes

Shutdown

1 or 0 10110 Reserved Yes TBD

1 or 0 111 Resrv ed Ye BD

NOTE: To be determined (TBD)

1 0

M I I,-)Tb- 55I h
, 1 September 1"Yb

.. . 3.5. 1.?. 1 "ra.nsit vecL& _wr q. 'his commard ,4hall cause the HT to
transmit a status word as specified tn . -. 3.5.3 arid a data word containing

s~erv ice request inf'ormation.

4. 3.3.5.1.7.12 i;ynchronize (with data wordi. 1he fI :ihall receive a command
word followed by a data word as specified Lin 4.3. 1.,., . 1he data word shall
contain synchronization information for the H'l. Aftfr reeeiving trne command

and data word, the HI shall transmit the status word as specified in 4.3.3.5 3.

4.3.3.5.1.7.13 1ransmit last command word. This command shall cause the HT to

transmit its status word as speeitled in 4.3.3.5.3 followed by a single data
word which contains bits 4-19 of the last command word, excluding a transmit
last command word mode code received by the HT. "his mode command shall not

alter the state of the HT's status word.

4.3.3.5.1.7.14 Transmit built-in-test (ill) word. 'his command shall cause
the HT to transmit its status word as specified in 4.3.3.5.3 followed by a

single data word containing the HT 811 data. This function is intended to
supplement the available bits in the status word when the HT hardware is

suf'ficiently complex to warrant its use. The data word, containing the RT BIT
data, shall not be altered by the reception of a transmit last command or a

transmit status word mode code. This function shall not be used to convey BIT

data from the associated subsystem(s).

4.3.3.5.1.7.15 Selected transmitter shutdown. This command shall cause the RT

to disable the transmitter associated with a specified redundant data bus. The
ccmand is designed for use with systems employing more than two redundant

buses. The transmitter that is to be disabled shall be identified in the data

word following the command word in the format as specified in 4.3.3.5.2. The

RT shall not comply with a command to shut down a transmitter on the bus lrom
which this command is received. In all eases, the HI shall respond with a

status word as specified in 4.3.3.5.3.

4.3.3.5.1.7.16 Uverride selected transmitter shutdown. This command shall

cause the hT to enable a transmitter which was previously disabled. The
command is designed for use with systems employing more than two redundant
buses. The transmitter that is to be enabled shall be identified in the data

word following the command word in the format as specified in 4.3.3.5.2. The
HT shall not comply with a command to enable a transmitter on the bus from
which this command is received. In all cases, the HT shall respond with a

status word as specified in 4.3.3.5.3.

4.3.3.5.1.7.17 tleserved mode codes (1010 to 11111_. These mode codes are

reserved for future use and shall not he used.

4. .3.5.2)ata word. A data word shall be comprised of a sync waveform, data

bits, and a parity bit (see figure 3).

4.3. .5.2.1 ,y.nc. The data sync waveform shall be an invalid Manchester

wavefurm as shown on figure 5. The width shall be three bit times, with the

wavetorm being negative for the first one and one-half bit times, and then
.sitlve for the following on and one-half bit time:;. Note that If the bits

pr'ecoding arid following thc sync are og ir oners, thn the apparent width of the
s ync waveform will bc" increasel to four bit times,

11

I * .. ~ 1

MlL-STD-1553h
21 Septemt'er 1976

4.3.3.5.2.2 2a. The sixteen bits following the sync shall be utilized for

data transmission as specified in 4.3.2.

4.3.3.5.2.3 ParitY. The last bit shall be utilized for parity as specified in

4.3.3.5.1.6.

4.3 .3.5.3 S Ltusods£. A status word shaLk be comprised of a sync waveform,
RT address, message error bit, instrumentation bit, service request bit, three
reserved bits, broadcast .onmmand received bit, busy bit, subsystem flag bit,
dynamic bus control acceptance bit, terminal flag bit, and a parity bit. For
optional broadcast operation, transmission of the status word shall be

suppressed as specified in 4.3.3.6.7.

4.3.3.5.3.1 U=. The status sync waveform shall be as specified in
4.3.3.5.1.1.

4.3.3.5.3.2 RTaddrema. The next five bits following the sync shall contain

the address or the RT which is transmitting the status word as defined in
4.3.3.5.1.2.

4.3-.3.5.3.3 Mjer jAtLi. The status word bit at bit time nine (see
figure 3) shall be utilized to indicate that one or more of the data words
associated with the preceding receive command word from the bus controller has

failed to pass the RT's validity tests as specified in 4.4.1.1. This bit shall
also be set under the conditions specified in 4.4.1.2, 4.4.3.4 and 4.4.3.6. A
logic one shall indicate the presence of a message error, and a logic zero
shall show its absence. All RT's shall implement the message error bit.

4.3.3.5.3.4 Instrumentation bit. The status word at bit time ten (see figure
3) shall be reserved for the instrumentation bit and shall always be a logic
zero. This bit is intended to be used in conjunction with a logic one in bit
time ten of the command word to distinguish between a command word and a status

word. The use of the instrumentation bit is optional.

4.3.3.5.3.5 Service request bit. The status word bit at bit time eleven (see
figure 3) shall be reserved for the service request bit. The use of this bit
is optional. This bit when used, shall indicate the need for the bus
controller to take specific predefined actions relative to either the RT or
associated subsystem. Multiple subsystems, interfaced to a single RT, which

individually require a service request signal shall logically OR their
individual signals into the single status word bit. In the event this logical

OR is performed, then the designer must make provisions in a separate data word
to identify the specific requesting subsystem. The service request bit is

intended to be used only to trigger data transfer operations which take place
on an exception rather than periodic basis. A logic one shall indicate the
presence of a service request, and a logic zero its absence. If this function
is not implemented, the bit shall be set to zero.

4.3.3.5.3.6 Reserved status bits. The status word bits at bit times twelve
through fourteen are reserved for future use and shall not be used. These bits

shall be set to a logic zero.

12

20

7- 7-

M 1 L-STD- 1553b
21 September 1978

. .3.5.3.7 eceLlvd aAL . The status word at bit time
fifteen shall be set to a logic one to indicate that the preceding valid

command word wag a broadcast nommand and a logic zero shall show it was not a
broadcast command. If the broadcast command option is not used, this bit shall
be set to a logic zero.

4.3.3.5.3.8 y ht. The status word bit at bit time sixteen (see figure 3)
shall be reserved for the busy bit. The use of this bit Is optional. This
bit, when used, shall indicate that the HT ,or subsystem Is unable to move data

to or from the subsystem in compliance with the bus controller's command. A
logic one shall indicate the pregnce (,f' a busy condition, and a logic zero its

absence. In the event the busy bit i9 s"t in response to a transmit command,
then the RT shall trannmit its status word only. If this function is not

implemented, the bit shall be set to logi,. zero.

4.3.3.5.3.9 Subsystem fla-DII. The status word bit at bit time seventeen
(see figure 3) shall be reserved for the subsystem flag bit. The use of this
bit is optional. This bit, when used, shall flag a subsystem fault condition,

and alert the bun controller to potentially invalid data. Multiple subsystems,
interfaced to a single RT, which inaividually require a subsystem flag bit

signal shall logically OR their Individual signals into the single status word
bit. In the event this logical OR is performed, then the designer must make

provisions in a separate data word to identify the specific reporting
subsystem. A logic one shall indicate the presence of the flag, and a logic

zero its absence. If not used, this bit shall be set to logic zero.

4.3.3.5.3.10 Dvnamic bun control acceptance bit. The status word bit at bit
time eighteen (see figure 3) shall be reserved for the acceptance of dynatic
bus control. This bit shall be used if the RT Implements the optional dynamic

bus control function. This bit, when used, shall indicate acceptance or
rejection of a dynamic bus control offer as specified in 4.3.3.5.1.7.1. A

logic one shall indicate acceptance of control, and a logic zero shall indicate
rejection of control. If this function is not used, this bit shall be set to

logic zero.

4.3.3.5.3.11 Terminal flag bit. The status word bit at bit time nineteen (see
, figure 3) shall be reserved for the terminal flag function. The use of this

bit is optional. This bit, when used, shall flag a RT fault condition. A

logic one shall indicate the preience of the flag, and a logic zero, its

absence. If not uned, this bit shall be set to logic zero.

4.3.3-.5.3-.12 Parityhit. The least significant bit in the status word shall
be utilized for parity as specified in 4.3.3.5.1.6.

4.3.3.5.4 Status word reset. The status wnrd bit, with the exception of the
address, shall be set to logic zer,) after a valid command word is received by
the RT with the exception as specifil-d in 4.3.3.5.1.. If the conditions which
caused bits in the status word to be tet (e.g., terminal flag) continue after

the bits are reset to logic zero, th-n th0, affected status word bit shall be

again set, and then transmitted on th(, bus as required.

4.3.3.6 Message formats. The mi9agcs transmitted on the data bus shall be in
accordance with the formats on figure 6 and figure '. The maximum and minimum
response times shall be as stated in 4.3.1.7 and 4.3.3.8. No message formats,
other than those defined herein, shall be used on the bus.

13

21

M II.-STD-1Y'5]i
21 &- ptviber 14 (8

4. 3. 1. 1 bus controller to remote terminal transfers. The bus controller
shall i.ssue a receive cuwunaij lollowed by the specilied number of data words.
The HI shall , after message val idation, transmit a status word back to the
controller. The conmand and uata words shall be transmitted in a contiguous
fashion with no intei word gaps.

4. 3.3.6.2 Remote terminal to bus contruller transfers. The bus controller
shall issue a transmit codnand to the H1. The HT shall, after command word
validation, transmit a status word back to the bus controller, followed by the
specified number of data words. The status and data words shall be tranmitted
in a contiguous fashion with no interword gaps.

4...6.3 R f mina toQ LslfL.Lra. The bus controller
shall issue a receive command to HT A followed contiguously by a transmit
command to RT B. RT 8 shall, after command validation, transmit a status word
followed by the specified number of data words. The status and data words

shall be transmitted in a contiguous faihlon with no gap. At the conclusion of
the data transmission by HT B, RT A shall transmit a status word within the
specified time period.

4.3.3.6.4 Mode command without data word. The bus controller shall issue a
transmit command to the HT using a mode code specified in table 1. The RT
shall, after command word validation, transmit a status word.

4.3.3.6.5 Mode command with data word (transmit). The b us controller shall

issue a transmit command to the HT using a mode code specified in table I. The
8T shall, after command word validation, transmit a status word followed by one
data word. The status word and data word shall be transmitted in a contiguous
fashion with no gap.

4.3.3.6.6 Mode command with data word (receivg). The bus controller shall
issue a receive command to the HT using L mode code specified in table I,
followed by one data word. The command word and data word shall be transmitted
in a contiguous fashion with no gap. The HT shall, after command and data word
validation, transmit a status word back to the controller.

4.3.3.6.7 ODtional broadcast command See 10.6 for additional information on
the use of the broadcast command.

4.3.3.6.7.1 bu3 controller to remote terminal(s) transfer (broadcast). The

bus controller shall issue a receive command word with 1111) in the HT address

field followed by the specified numoer of data words. The command word and
data words shall be transmitted in a contiguous tashion with no gap. The HT(s
with the broadcast option shall after message validation, set the broadcast
command received bit in the status word as specified in 4.3.3.5.3.7 and shall
not transmit the status word.

14

22

ML- 3Th-155E0
21 September 1978

w 0

r *

0A

z :t :
1z

HF-. 0

zOH

<2

MIL-STD-1553B

21 September 1978

ZfO
00

F---io

I r

i :9

|w V

< 0

00

l

00

24

IMI3

-tol

UK a
3r U,0

00

cye-

H(//I

uH 00 04

24

MIL-STD- 1553B
21 September 1978

4.3.3.6.7.2 Remote terminal to remote terminal(s) transfers (broadcast). The
bus controller shall issue a receive command word with 11111 in the RT address
field followed by a transmit command to fil A using the RT's address. RT A
shall, after command word validation, transmit a status word followed by the

specified number of data words. The status and data words shall be transmitted
in a contiguous fashion with no gap. The RT(s) with the broadcast option,
excluding HT A, shall after message validation, set the broadcast received bit
in the status word as specified in 4.3.3.5.3.7 and shall not transmit the
status word.

4.3.3.6.7.3 Mode command without data word (broadcast). The bus controller
shall issue a transmit command word with 11111 in the HT address field, and a
Mode code specified in table 1. The RT(s) with the broadcast option shall
after command word validation, set the broadcast received bit in the status
word as specified in 4.3.3.5.3.7 and shall not transmit the status word.

4.3.3.6.7.4 Mode command with data word (broadcast). The bus controller shall
issue a receive command word with 11111 in the HT address field and a mode code
specified in table 1, followed by one data word. The command word and data
wcrd shall be transmitted in a contiguous fashion with no gap. The RT(s) with
the broadcast option shall after message validation, set the broadcast received
bit in the status word as specified in 4.3.3.5.3.7 and shall not transmit the
status word.

4.3.3.7 Intermessae gao. The bus controller shall provide a minimum gap time
of 4.0 microseconds (js) between messages as shown on figure 6 and figure 7.
This time period, shown as T on figure 8, is measured at point A of the bus
controller as shown on figure 9 or figure 10. The time is measured from the
mid-bit zero crossing of the last bit of the preceding message to mid-zero
crossing of the next command word sync.

4.3.3.8 Response time. The HT shall respond, in accordance with 4.3.3.6, to a
valid command word within the time period of 4.0 to 12.0 us. This time period,
shown as T on figure 8, is measured at point A of the RT as shown on figure 9
or figure 10. The time is measured from the mid bit zero crossing of the last
word as specified in 4.3.3.6 and as shown on figure 6 and figure 7 to the

mid-zero crossing of the status word sync.

4.3.3.9 inimum ao-reBponse time-out. 1he minimum time that a terminal shall

wait before considering that a response as specified in 4.3.3.8 has not
occurred shall be 14.0 us. The time is measured from the mid-bit zero crossing
of the last bit of the last word to the mid-zero crossing of the expected
status word sync at point A of the terminal as shown on figure 9 or figure 10.

4.4 Terminal operation.

4.4.1 Common operation. Terminals shall have common operating capabilities as
specified in the following paragraphs.

17

25

MIL-STD- 1 553B
21 September 1978

4-1

0 41

CL41

0 0
P. >

18

26

- I

M IL-STD- 15538
21 September 1978

r- - BUS SHIELD

DATA BUS \
WIRE PAIR I

ISOLATION I

I RESISTORS (SHIELDING

0.5 \ <,

R = O.75Z + 2%
0- R R

-. 4 COUPLING TRANSFORMER

I..

LI

STUB OF
SPECIFIED LENGTH A

__ - - ISOLATION
TRANSFORMER

TRANSMITTER/RECEIVER

TERMINAL

FICURE q. Data bus interface using transformer coupling.

19

27

. -&4 - -40 .

M IL-SiD- 1 r)53b

21 September 14'18

F . . .BUS SHIELD

DATA BUS

WIRE PAIR
_ _ Pi _/ /Ii__t

- SHIELDING

L
STUB OF TH-- i

SPECIFIED LENGTH _ _ A

R . -

ISOLATION

P TRANSFORMER

TRANSM I FlrFR/RECEI VER _

TERM I NAI.

FICURE 10. Data bua Inttrface usinL direct couplin1g.

20

28

MIL-STD-1553B
21 September 1978

4.4. 1.1 Word validation. The terminal shall insure that each word conforms to
the following minimum criteria:

a. The word begins with a valid sync field.
b. The bits are in a valid Manchester 11 code.
c. The information field has 16 bits plus parity.
d. The word parity is odd.

When a word fails to conform to the preceding criteria, the word shall be
considered invalid.

4.4.1.2 Transmission continuity. The terminal shall verify that the message
is contiguous as defined in 4.3.3.6. Improperly timed data syncs shall be
considered a message error.

4.4.1.3 Terminal fail-safe. The terminal shall contain a hardware implemented
time-out to preclude a signal transmission of greater than 800.0 jus. This
hardware shall not preclude a correct transmission in response to a command.
Reset of this time-out function shall be performed by the reception of a valid
command on the bus on which the time-out has occurred.

4.4.2 Bus controller operation. A terminal operating as a bus controller
shall be responsible for sending data bus commands, participating in data
transfers, receiving status responses, and monitoring system status as defined
in this standard. the bus controller function may be embodied as either a
stand-alone terminal, whose sole function is to control the data bus(s) , or
contained within a subsystem. Only one terminal shall be in active control of
a data bus at any one time.

4.4.3 Remote terminal.

4.4.3.1 Operation. A remote terminal (RT) shall operate in response to valid
commands received from the bus controller. The RI shall accept a command word
as valid when the command word meets the criteria of 4.4.1.1, and the command
word contains a terminal address which matehes the RT address or an address of
11111, if the RT has the broadcast option.

4.4.3.2 Superseding valid commands. The HT shall be capable of receiving a
command word on the data bus after the minimum intermessage gap time as
specified in 4.3.3.7 has been exceeded, when the hT is not in the time period T
as specified in 4.3.3.8 prior to the transmission of a status word, and when it
is not transmitting on that data bus. A second valid command word sent to an
RT shall take precedence over the previous command. The RT shall respond to
the second valid command as specified in 4.3.3.8.

4.4.3.3 invalid conands. A remote terminal shall not respond to a command
word which fails to meet the criteria specified in 4.4 .3.1.

4.4.3.4 lllejxal command. An illegal command is a valid command as specified
in 4.4.3.1, where the bits in the subaddress/mdeI ield , data word count/mode
code field, and the T/R bit indicate a mode (onmand, subaddress, or word count
that has not been implemented in the H1. it is the responsibility of the bus
controller to assure that no illegal commands are rent out. The RT designer
has the option of monitoring for illegal commands. If an HT that is designed
with this option detects an illegal command and the, ;roper number of contiguous

29

MIL-STD-1553b
21 September 1978

valid data w)rds as spe(ifLed by the illegal comanid word, it shall respoind
with a status word urly, setting the message error bit, and not use the
information received.

4.4 -3.5 Valid data Ee(et _n. The remote terminal shall respond with a status
word when a valid command w(,rd and the proper number of contiguous valid data

words are received, or a single valid word associated with a mode code is
received. Each data word shall meet the criteria specified in 4.4.1.1.

4.4.3.6 inval-d data reception. Any data word(s) associated with a valid
receive command that does not meet the criteria specified in 4.4.1.1 and

4.4.1.2 or an error in the data word Qount shall cause the remote terminal to
set the message error bit in the status word to a logic one and suppress the
transmission of the ntatus word. It' a message error has occurred, then the
entire message shall be considered inval id.

4.4.4 Bus monitor operation. A terminal operating as a bus monitor shall
receive bus traffic and extract selected information. While operating as a bus
monitor, the terminal shall not respond to any message except one containing
its own unique address if one is assigned. All information obtained while
acting as a bus monitor shall be strictly used for off-line applications (e.g.,
flight test recording, maintenance recording or mission analysis) or to provide
the back-up bus controller sufficient information to take over as the bus

controller.

4.5 Hardware characteristics.

4.5.1 Data bus characteristics.

4.5.1.1 Cable. The cable used for the main bus and all stubs shall be a two
conductor, twisted, shielded, jacketed cable. The wire-to-wire distributed
capacitance shall not exceed 30.0 picofarads per foot. The cables shall be
formed with not less than four twists per foot where a twist is defined as a
360 degree rotation of the wire pairs; and, the cable shield shall provide a
minimum of 75.0 percent coverage.

4.5.1.2 Characteristic imnedance. The nominal characteristic impedano of the

cable (Zo) shall be within the range of 70.0 ohms to 85.0 ohms at a sinusoidal
frequency ot 1.0 megahertz (MHz).

4.5.1.3 Cable attenuation. At the frequency of 4.5.1.2, the cable power loss

shall not exceed 1.5 decibels (db)/100 feet (ft).

4.5.1.4 Cable termination. The two ends of the cable shall be terminated with
a resistance, equal to the selected cable nominal characteristic impedance (Zo)
! 2.0 percent.

4.5.1.5 Cable stub reauirements. The cable shall be coupled to the terminal
as shown on figure 9 or figure 10. The use of long stubs is discouraged, and
the length of a stub should be minimized. However, if installation
requirements dictate, stub lengths exceeding those lengths specified in
4.5.1.5.1 and 4.5.1.5.2 are permissible.

22

30

M IL-STD-1 553h
1 Sept emb er 1918

4I ii n__Zormer.c Lid stuba. lh. tier gtrh of a transformer coupled stub
should riot exceed Io feet It a trarjsf orintor cou l ed stub is used, then the
following shall apily.

4.5. 1.5. 1. 1 otrI trdrsorrrier. A otiplrig I.rarnsurner, as shown on figure

9, shall be required. "Iris trans former, shall have a turns ratio of 1:1.41 1
3.0 percent, with the higher turns on thfe isolation resistor side of the stub.

4.5.I.5.1.1. IJ_ The open circuit impedance as seen
at point B on figure 11 shall be grpater than 3000 ohms over the frequency

range of 75.0 kilonertz (kHz) to 1.0 megahertz (MHz), when Imeasured with a 1.0 V
root-mean-square (RMS) sin wav".

4.5.1 .5.1.1.2 Iranas-ZtUer/ -vfurm integrity. The droop of the transformer
using the test configuration shown on figure 11 at point B, shall not exceed
20.0 percent. Overshoot and ringing as measured at point B shall be less that

1 1.0 V peak. For this test, R shall equal 360.0 ohms ± 5.0 percent and the
input A of figure 11 shall be a 250.0 kHz square wave. 27.0 V peak-to-peak,
with a rise and fall time no greater than 100 nanoseconds (ns).

4.5.1.5.1.1.3 Iranfs!fra moe-Xgi.1. . The coupling transformer
shall have a common mode rejection ratio greater than 45.0 dB at 1.0 MHz.

4.5.1.5.1.2 Fault isolation. An isolation resistor shall be placed in series

with each connection to the data bus cable. This resistor shall have a value
of 0.75 Zo ohms plum or minus 2.0 percent, where Zo is the selected cable

nominal characteristic impedance. The impedance placed across the data bus
cable shall be no less than 1.5 Z, ')hmn for any failure of the coupling
transformer, cable stub, or terminal transmitter/receiver.

4.5.1.5.1.3 Cable -ij . All coupling transformers and isolation
resistors, as specified in 4.5.1.5.1.1 and 4.5.1.5.1.2, shall have continuous
shielding which will provide a minimum of 75 percent coverage. The Isolation
resistors and coupling transformers shall be placed at minimum possible
distance from the junction of the stub to the main bus.

4.5.1.5.1 4 Stub voltage requirements. Every data bus shall be designed such
that all icubs at point A of figure 9 shall have a peak-to-peak amplitude,

line-to-lihe within the range of 1.0 and 14.0 V for a transmission by any
terminal on the data bus. This shall include the maximum reduction of data bus
signal amplitude in the event that one of the terminals has a fault which
causes it to reflect a fault impedance specified in 4.5.1.5.1.2 on the data

bus. This shall also Include the worse case output voltage of the terminals as
specified in 4.5.2.1.1.1 and 4.5.2.2.1.1.

4.5.1.5.2 Direct counledaLub. The length of a direct coupled stub should
not exceed I foot. Refer to 10.5 for comments concerning direct covled stubs.
If a direct coupled stub is used, then the following shall apply.

.5.1.5.2.1Fault isolation. An isolation resistor shall be placed in series

with each connection to the data bus eble. This resistor shall have a value
of 55.0 ohms plus or minus 2.0 percent. The isolation resistors shall be

placed within the RT as shown on figure 10.

23

31

* ~ ~.~'fl4 --... in .,.~ a.

tilL-STVLJ)3B

21 September 1978

OUTPUT B

R
I N -[-"-C

A

PERCENT DROOP C - x 100

FIGURE 11. CouolinR transformer.

TERMINAL I
A

R1

FIGURE 12. Terminal I/O characteristics for transformer coupled and direct

_pe(d stubs.

24

32

MIL-STD-1553B
21 September 1978

4.5.1.5.2.2 Q@ible cQutling. All bus-stub Junctions shall have continuous
shielding which will provide a minimum of 75 percent coverage.

4.5.1.5.2.3 "tb ygjL&u £iuL~ueaL s. Every data bug shall be designed such
that all stubs at point A of figure 10 shall have a peak-to-peak amplitude,
line-to-line within the range of 1.4 and 20.0 V for a transmission by any
terminal on the data bug. This shall irte'ud, the maximum reduction of data
bus signal amplitude in the event that one of the terminals has a fault which
causes it to reflect a fault impedance of 110 ohms on the data bus. This shall
also include the worst case output voltage of the terminals as specified in
4.5.2.1.1.1 and 4.5.2.2.1.1.

4.5.1.5.3 Wijng. J A.cablin for EMC. For purposes of electromagnetic
capability (EMC), the wiring and cabling provisions of MIL-E-6051 shall apply.

4.5.2 Terminal characteristics.

4.5.2.1 Terminals with transformer couled stubs.

4.5.2.1.1 Terminal outout characteristics. The following characteristics
shall be measured with RL, as shown on figure 12, equal to 70.0 ohms ±t 2.0
percent.

4.5.2.1.1.1 Output levels. The terminal output voltage levels shall be
measured using the test configuration shown on figure 12. The terminal output
voltage shall be within the range of 18.0 to 27.0 V. peak-to-peak,
line-to-line, when measured at point A on figure 12.

4.5.2.1.1.2 Qutput waveform. The waveorn, when measured at point A on figure
12 shall have zero crossing deviations which are equal to, or less than, 25.0
ns from the ideal crossing point, measured with respect to the previous zero
crossing (i.e., .5 t .025 us, 1.0 ± .025 js, 1.5 ± .025 .us, and 2.0 ± .025 j.is).
The rise and fall time of this waveform shall be from 100.0 to 300.0 ns when
measured from levels of 10 to 90 percent of full waveform peak-to-peak,
line-to-line, voltage as shown on figure 13. Any distortion of the waveform
including overshoot and ringing shall not. exceed 1 900.0 millivolts (mV) peak,
line-to-line, as measured at point A, figure 12.

4.5.2.1.1.3 Output noise. Any noise transmitted when the terminal is
receiving or has power removed, shall not exceed a value of 14.0 mV, IIMS,
line-to-line, as measured at point A, figure 12.

4.5.2.1.1.4 Uutput gymmetry. rom the time beginning 2.5 us after the mid-bit
crossing of the parity bit of the last word transmitted by a terminal, the
maximum voltage at point A of figure 12 shall be no greater than _ 250.0 mV
peak, line-to-line. This shall be tested with the terminal transmitting the
maximum number of words it is designed to trartsmit, up to 3j. This test shall
be run six times with each word in a cont.Leuous blOCK of words having the same
bit pattern. The six word contents that snall be used are 800016, 7PFF 16 ,
000016, FFP'P"16 , 555516, and AAAA 16 . The output o the terminal shall be as
specified in 4.5.2.1.1.1 and 4.5.2. 1.1.2.

4.5.2.1.2 Terminal input chartristcs, 1he following characteristics shall
be measured independently.

25

33

I.,

MLL-STD-1 5538
21 September' 1978

I I

I I

I I
I I

I 0

-4 - -4 -

4 I

I '-4
I..

a'. a".
0 0 0
0' Sf-' -~

IJ') I/I
H I- H
-~ -~
0 0 0

+ '0

26

34

---4

Pi IL-TD- 1553B21 September 1978

[45.2. I. 1 Iikut w'lvibrm cmpaLib lty , lhe ter'mirsal shall ue capable oI
receivirg ,trd operat i g with th. ir,,om imm -igrials sp-'i tied herein, and shall
accept wavetorn varying froin a square wive to a sine wave with a maximum zero
crossing deviation from the ideial with re;rpect to the previous zero crossing of
! 150 ns, (i.e., 2.0 + .11) uq, 1.5 ! .1', jis, 1.0 * .! ' ps, t 5 15M5). The
terminal shall respond to an input signal whose peak-to-peak amplitude,
line-to-line, is within the rarige of .b6 to 14.0 V. 1he terminal shall not
respond to an input sigrial whose peak-to-peak amplitude, line-to-line, is
within the range of O.0 to .20 V. The voltages are measured at point. A on
figure 9.

4.5.2.1.2.2 Common mode rejection. Any signals frony direct current (DC) to

2.0 Mlz,with amplitudes equal to or less than 1 10.0 V peak, line-to-ground,
measured at point A on figure 9, shall not degrade the performance of the
receiver.

4.5.2.1.2.3 Input impedance. The magnitude of the terminal input impedance,

when the RT is not transmitting, or has power removed, shall be a minimum of
1000.0 ohms within the frequency range of (5.0 khz to 1.0 MHz. This impedance
Is that measured line-to-line at point A on figure 9.

4.5.2.1.2.4 Noise rejection. The terminal shall exhibit a maximum word error
rate of one part in 107 , on all words received by the terminal, after
validation checks as specified in 4.4, when operating in the presence of
additive white Gaussian noise distributed over a bandwidth of 1.0 kHz to 4.0
MHz at an RMS amplitude of 140 mV. A word error shall include any fault which
causes the message error bit to be set In the terminal's status word, or one
which causes a terminal to not respond to a valid command. The word error rate
shall be measured with a 2.1 V peak-to-peak, line-to-line, input to the
terminal as measurea at point A on figure 9. The noise tests shall be run
continuously until, for a particular number of failures, the number of words
received by the terminal, including both command and data words, exceeds the
required number for acceptance of the terminal, or is less than the required
number for rejection of the terminal, as specified in table II. ll data words
used in the tests shall contain random bit patterns. These bit patterns shall
be unique for each data word in a message, and shall change randomly from
message to message.

4.5.2.2 Terminals with direct coupled stubs.

1.5.2.2.1 Terminal output characteristics. The following characteristics
shall be measured with RL, as shown on figure 12, equal to 35.0 ohms ! 2.0
percent.

4.5.2.2.1.1 Uutout levels. The terminal output voltage levels shall be

measured using the test configuration shown on figure 12. The terminal output
voltage shall be within the range of b.0 to 9.0 V, peak-to-peak, line-to-line,
when measured at point A on figure 12.

27

35

HIL-STD-15538
21 September 1978

Table II. Criteria for acceptance or re Jeton of a
terminal for the no ie rejection te

TOTAL. WORDS HECEIVED bY THE T.HMINAL
(in multiples of 107)

No. of heject Accept
rrors (Egual or less) (EQual or more)

0 N/A 4. 40

A N/A 5.21
2 N/A 6.02
3 N/A 6.b3
4 N/A '.64
5 N/A 8.4'
6 .45 9.27
7 1.26 10.08
8 2.07 10.89
9 2.88 11.70
10 3.69 12.51
11 4.50 13.32
12 5.31 14.13
13 6.12 14.94
14 6.93 15.75
15 7.74 16.56
16 8.55 17.37
17 9.37 18.19
18 I0.18 19.00
19 10.99 19.bI
20 11.80 20.62
21 12.61 21.43
22 13.42 22.24

23 14.23 23.05
24 15.04 23.86
25 1t.85 24.67
26 16.66 25.48
2'1 17.47 26.29
28 18.29 27.11
29 19.10 27.92
30 19.90 28.73
31 20.72 29.54
32 21.53 30.35
33 22.34 31.16
34 23.)5 31. '
35 23.96 32.78
36 24.77 '3.00
37 25.58 33.00
38 26.39 33.00
39 27.21 33.00
40 28.02 33.00
41 33.00 N/A

28

36

MlL-STD-1553b
21 September 1978

4.5.2.2.1.2 Outoupt wavelor. The waveform, when measured at point A on figure
12, shall have zero crossing deviations which are equal to, or less than, 25.0
ns from the ideal crossing point, measured with respect to the previous zero
crossing (i.e., .5 ! .025 Ms, 1.0 t .025 us 15 + .025 us and 2.0 + .025 jis).
The rise and fall time of this waveforn shall be Trom 100.0 to 300.0 na when
measured from levels of 10 to 90 percent of full waveform peak-to-peak,
line-to-line, voltage as shown on figure 13. Any distortion of the waveform
including oversh) ot and ringing shall not exceed t 300.0 nV peak, line-to-line,
as measured at roint A on figure 12.

4.5.2.2.1.3 QAtut noi_e. Any noi3e transmitted when the t:rminal is
receiving or his power removed, shall not exceed a value of 5.0 mV, RMS,
line-to-line, as measured at point A on figure 12.

4.5.2.2.1.4 Output symmetr . From the time beginning 2.5 us after the mid-bit
crossing of the parity bit of the last word transmitted by a terminal, the
maximum voltage at point A on figure 12, shall be no greater than t 90.0 mV
peak, line-to-line. This shall be tested with the terminal transmitting the
maximum number of words it is designed to transmit, up to 33. This test shall
be run six times with each word in a contiguous block of words having the same
bit pattern. The six word contents that shall be used are 800016, 7FFF 16 ,
000016, FFFF1 6 , 555516, and AAAA1 6 . The output of the terminal shall be as
specified in 4.5.2.2.1.1 and 4.5.2.2.1.2.

4.5.2.2.2 Terminal input characteristics. The following characteristics shall
be measured independently.

4.5.2.2.2.1 Input waveform pompatibilill. The terminal shall be capable of
receivinC and operating with the incoming signals specified herein, and shall
accept wa-eform varying from a square wave to a sine wave with a maximum zero
crossing deviation from the Ideal with respect to the previous zero crossing of
plus or minus 150 ns, (i.e., 2.0 + .15 us 1.5 t..15 us 1.0 t .15 us
.5 ± .15 us). The terminal shall respond to an input signal whose peak-to-peak
amplitude, line-to-line, is within the range of 1.2 to 20.0 V. The terminal
shall not respond to an input signal whose peak-to-peak amplitude,
line-to-line, is within the range of 0.0 to .28 V. The voltages are measured
at point A on figure 10.

4.5.2.2.2.2 rommon mode rejectionn. Any signals from DC to 2.0 M1z, with
amplitudes equal to or les than ! 10.0 V peak, line-to-ground, measured at
point A on figure 10, shall not degrade the performance of the receiver.

4.5.2.2.2.3 Inout impedance. The magnitude of the terminal input impedance,

when the RT is not transmitting, or haq power removed, shall be a minimum of
2000.0 ohms within the frequency range of '5.0 kHz to 1.0 MHz. This Impedance
is that measured line-to-line at point A on figure 10.

4.5.2.2.2.4 Noise retection. The terminal shall exhibit a maximum word error
rate of one part in 107, on all words received by the terminal, after
validation checks as specified in 4.4, when operating in the presence of
additive white Gaussian noise distrlbutpd)ver a bandwidth of 1.0 kflz to 4.0
MHz at an RMS amplitude of 200 mV. A wrrd error shall include any fault which
causes the message error bit to be s-t in the terminal's status word, or one
which causes a terminal to not respond to a valid command. The word error rate
shall be measured with a 3.0 V peak-to-peak, line-to-line, input to the

29

37

MIL-STD-1 553b
21 September 1978

terminal as measured at point A on fig,'e 10. The noise tests shall be run
continuously until, for a particular nuinber of failures, the number of words
received by the terminal , including bott command and data words, exceeds the
required number for acceptance of the terminal i or is less than the required
number for rejection of the terminal, as specified in table I. All data words
used in the tests shall contaln random bit patterns. These bit patterns shall
be unique for each data word in a message, and shall change randomly from
message to message.

4.6 Redundant data bus requirements. if redundant data buses are used, the
requirements as specified in the following shall apply to those data buses.

4.6.1 Elec&rical Isolation. All terminals shall have a minimum of 45 dB
isolation between data buses. Isolation here means the ratio in dB between the
output voltage on the active data bus and the o-itput voltage on the inactiVL
data bus. This shall be measured using the test configuration specified in
4.5.2.1.1 or 4.5.2.2.1 for each data bus. Each data bus shall be alternately
activated with all measurements bering taken at point A on figure 12 for each
data bus.

4.6.2 Sinile event failures. All data buses shall be routed to minimize the
possibility that a single event failure to a data bus shall cause the loss of
more than that particular data bus.

4.6.3 Dual standby redundant data bus. If a dual redundant data bus is used,
then it shall be a dual standby redundant data bus as specified in the
following paragraphs.

4.6.3.1 Data bus activity. Only one data bus can be active at any given time
except as specified in 4.6.3.2.

4.6.3.2 Reset data bus transmitter. If while operating on a command, a
terminal receives another valid command, from either data bus, it shall reset
and respond to the new command on the data bus on which the new command is
received. The terminal shall respond to the new command as specified in
4.3.3.8.

5. DETAIL REQUIREMENTS (Not Applicable)

Custodians: Preparing Activity:
Army - EL Air Force - 11
Navy - AS
Air Force- 11 Project MISC-OD03

30

38

"Am
.. I " - - M 0-- - J

MIL-ST V-i5538
21 September 1978

10. General. The following paragraphs in this appendix are presented in order
to discuss certain aspects of thse standard in a general sense. They are
intended to provide a user of the standard more insight into the aspects
discussea.

10.1 fedundanc . It is intended that this standard be used to support rather
than to supplant the system design process. However, it has been found,
through application experience in various aircraft, that the use of a dual
standby redundancy technique is very desirable for use in integrating mission
avionics. For this reason, this redundanoy scheme is defined in 4.6 of this
standard. None the less, the system designer should utilize this standard as
the needs of a particular application dictate. The use of redundancy, the
degree to which it is implemented, and the form which it takes must be
determined on an individual application basis. Figures 10.1 and 10.2
illustrate some possible approaches to dual redundancy. These illustrations
are niot intended to be inclusive, but rather representative. It should be
noted that analogous approaches exist for the triple and quad redundant cases.

10.2 Bus controller. The bus controller is a key part of the data bue system.
The functions of the bus controller, in addition to the issuance of commands,
must include the constant monitoring of the data bus and the traffic on the
bus. It is envisioned that most of' the routine minute details of bus
monitoring (e.g., parity checking, terminal non-response time-out, etc.) will
be embodied in hardware, while the algorithms for bus control and decision
making will reside in software. it is also envisioned that, in general, the
bus controller will be a general purpose airborne computer with a special
input/output (1/0) to Interface with the data bus. it is of extreme importance
in bus controller design that the bus controller be readily able to accommodate
terminals of differing protocol's and status word bits used. Equipment
designed to MIL-STD-1553A will be in use for a considerable period of time;
thus, bus controllers must be capable of adjusting to their differing needs.
It is also Important to remember that the bus controller will be the focal
point for modification and growth within the multiplex system, and thus the
software must be written in such a manner as to permit modification with
relative ease.

39

tMlL-ST)- I 553b
21 September 1978

BUS

CONTROLLER

REOERT RT

SBYTMSUBSYSTEM4 SUBSYSTEM

FIGURiE 10.1. Illustration of possible redundancl.

BUS BUS

CONTROLLER CONTROLER

CO. BUS NO. 1LER

BUS NO. 2

R T R TS U B S Y S T E M

RT WITH
EMBEDDED RT

SUBSYSTEM SUBSYSTEM CAPABILITY

Figure 10.2

NOTE: RT - Remote Terminal

FIGURE 10.2. Illustration of possible redundancy.

32

40

4 MIL-STD-1 5538
21 September 1978

10.3 BILjipjex i4.electioUg:tzjA. The -seiectioni of candidate signals for
multiplexing is a function of the partio~ular applination involved, and criteria
will in general vary from system to system. Obviously, those signals which
have bandwidths of 400 hz or less are prime candidates for inclusion on the
bus. It is also obvious that video, audiio, and high speed parallel digital
signals should be excluded. The area of questionable application is Usually
between 400 Hiz and 3KHz bandwidth. The transfer of' these signals on the data
bus will depend heavily upon the loading of' the bus in a particular
application. The decision must be based on projected future bus needs as well
as the current loading. Another class of signals which in general are not
suitable for multiplexing are those which can be typified by a low rate (over a
Mission) but possessing a high priority or urgency. Examples of such signals
might be a nuclear event detector output or a missile launch alarm from a
warning receiver. Such signals are usually better left hardwired, but they may
be accommodated by the multiplex system if a direct connection to the bus
controller's interrupt hardware is used to trigger a software action in
response to the signal.

10.4 Hiah reliability reQuirements. The use of simple parity for error
detection within the multiplex bus system was dictated by a compromise between
the need for reliable data transmission, system overhead, and remote terminal
simplicity. Theoretical and empirical evidence indicates that an undetected
bit error rate of 10-12 can be expected from a practical multiplex system built
to this standard. If a particular signal requires a bit error rate which is
better than that provided by the parity checking, then it is incumbent upon the
system designer to provide the reliability within the constraints of the
standard or to not include this signal within the multiplex bus system. A
possible approach in this case would be to have the signal source and sink
provide appropriate error detection and correction encoding/decoding and employ
extra data words to transfer the information. Another approach would be to
partition the message, transmit a portion at a time, and then verify (by
interrogation) the proper transfer of each segment.

10.5 Stbi Stubbing is the method wherein a separate line is connected
between the primary data bus line and a terminal. The direct connection of a
stub line causes a mismatch which appears on the waveforms. This mismatch can
be reduced by filtering at the receiver and by using bi-phase modulation.
Stubs are often employed not only as a convenience in bus layout but as a means
of coupling a unit to the line in such a maniner that a fault on the stub or
terminal will not greatly affect the transmission line operation. In this
case, a network is employed in the stub line to provide isolation from the
fault. These networks are also used for stubs that are of such length that the
mismatch and reflection degrades bus operation. Tne preferred method of
stubbing is to use transformer coupled stubs, as defined in 4.5.1.5-1. This
method provides the benefits of DC isolation, increased common mode protection,
a doubling of effective stub impedance, and fault isolation for the entire stub
and terminal. Direct coupled stubs, as definied in 4.5.1.5.2 of this standard,
should be avoided if at all possible. Direct coupled stubs provide no DC
isolation or common mode rejectLion for the terminal external to its subsystem.
Further, any shorting fault between the subsystems internal isolation resistors
(usually on a circuit board) and the main bus junction will cause failure of
that entire bus. It can be expected that when the direct coupled stub length
exceeds 1.6 feet, that it will begin to distort the main bus waveforms. Note
that this length includes the cable runs internal to a given subsystem.

33

41

h Ii.-SI U- I1) h

?I Sepl~emb~er-1r

10.6 k Le21' broadcastl.ooori. The u;c t'f a broadcafit message as defined in
4.3.3.6.7 of' this standard rteproserits it signiicariL(departUre from the basic
philosophy of this standard in that. it. i.9 a mressage foriiat which does riot
provide positive closed-loop control of bus tra ffic. The system designer is
atrongly encouraged to solve any design problems through the use of the three
basic message formats without resorting to use of t.he broadcast. If system
designers do choose to use the broadcast command, they should carefully
consider the potential effects of a missed broadcast. message, and the
3ubsequent implications for lault or error recovery design in the remote
terminals and bus controllers.

34

42

STANDARDIZATION DOCUMENT IMPROVEMENT PROPOSAL N A "
' r

INSTRUCTIONS: The purpose of this form is to solic it lien. fi lI -mr1ento wh,, h will help at hieve p-, ire
ment of suitable products at reasonable cost and minimum delay. or will olherwaie enihan c use of the dor, ,ent
DoD contractors, govemment activilies, or manufacturers, vendors who ar prospe tive suppliers of the proud I
are invited to subm it comments to the government. Fold on lines on reverse side. staple in r rrner and r-ot to
pbepating activity Comments submItLed on this form do not constitute or impl authorization to waive an,
portion of the referenced document(s) or to amend contractual requirements. Attah any pertinent data whi, h
may I-e of use In improving this document. If there are additional papers, attach to form and place both in on

enve1lpe addressed to preparing activity.

DOCUMENT ,DENT IER AND TITLE

NAME OF ORGANIZATION AND ADDRESS CONTRACT NUMBER

-DIRECT GOVERNMENT CONTRAC T jSUCONTRA C

HAS ANY PART OF THE DOCUMENT CREATED PROBLEMS OR REQUIRED INTERPRETATIONIt- PROCUREMENT
USE?
A GIVE PARAGRA-O NiJ-nER AND WORDING

0 RECOMM-END:rIONs On COtRCTING THE DEFICIENCIES

2. COMMENTS ON ANY DOCUMENT REQUIREMENT CONSIDERED TOO RIGID

3. IS THE DOCUMENT RESTRICTIVE'

yeS [l NO Orll "iYai In wat warP)

4. RErMARKS

SUMMITTED BY Plneortednm dBde -Oina) TELEPHONE NO.

DATE

DD, JAN 1426 REPLACES EOITION OF It JAN f WHICH MAY Oe USED 1

43

,,, - - ,. :

FOLD

ASD/EI'ESSPOTGANFESAI
Wriht~ater onAFB o4543 EP ARTU E NT OF THE AIR FORCE U.AL

OFFICIAL BUSINESS DI i31PENALTY FOR PRIVATE USE $300oD31

ASD/ENESS

Wright-Patterson AFB, Ohio 115433

FOLD

44

IThis document has been approved I MIL-STD-1589B (USAF)
Ifor public release and sale: its! 06 June 1980
Idistribution is unlimited I SUPERSEDING

MIL-STD--1589A (USAF)
15 March 1979

MILITARY STANDARD

JOVIAL (J73)

5FSC IPSC

45 1

MIL-STD-1 589 B(USAF)
06 June 1980

46

MIL-STD-1589B (USAF)
06 June 1980

PREFACE

This document is the revised MIL-STD-1589B Draft (USAF) definition

of the upgraded J73 JOVIAL programming language. The sections are
organized In a top-down manner. The first section describes the
Interactions between the modules of the complete program so that in
subsequent sections the structures of the language can be described (to

the extent possible) without reference to their Interaction with other
st ructures.

Most sections are divided Into separate parts entitled "Syntax,"
"Semantics," and "Constraints." The "Syntax" descriptions define the
grammar of the language in a modified BNF notation. The "Semantics"
discussions define the meaning of constructs that satisfy the Syntax and
Constraints. The "Constraints" discussions enumerate non-syntactic
requirements that must be met in order for the given constructs to be
legal. The Intent is that the Syntax, Semantics, and Constraints not be
redundant with each other - e.g., the Semantics sections do not normally
repeat something that should be :Thvious from the Syntax, neither do they
repeat stipulations that are listed as Constraints.

Some of the designated Constraints apply at compile time, and

others pertain to errors that are not detectable until the compiled
program is executed. In order to conform to this standard, a J73
compiler must detect compile-time errors, but it is not required to
generate code for run-time checks.

The Appendix provides a cross-reference Index to constructs that
appear in the Syntax. For each construct, the index gives the number of
the section where that construct is defined and the numbers of the
sections where that construct is used in a definiton.

The following metalanguage conventions 'have been observed in this
document:

1. Terminal symbols, i.e., those which actually appear in a
program are written In upper case. For example:

BEGIN
END
STATIC

2. Non-terminal symbols, i.e., those which represent groups of
terminal symbols are written in lower case and enclosed
between < and >. If any non-terminal symbol Is longer than
one word, the words are separated by a hyphen. For example:

lii
47

MIL-STD-1589B(USAF)
06 June 1980

<compool-module>
<ordinary-table-body>

3. The following special symbols are used in the metalanguage.

means "is defined as." For example,

<a> ::= <c>

where <a> is defined as the string followed by
the string <c>. Definitions that do not fit on one
line may extend to the next line or lines.

I The I symbol indicates that what follows is an
alternate choice of definition for the non-terminal
to the left of the ::= symbol. For example,

<a> ::= I <0

where <a> is defined as either the string or
the string <c>.

[If a string may optionally be present, it is
enclosed between [and]. For example,

<a> ::= [] <0>

where <a> is defined as either the string <c> or

the string followed by the string <c>.

4. The following symbols have metalinguistic meaning when
4 appended to a non-terminal:

S.. One or more Instances of the string represented by
non-terminal

,... One or more instances separated by a comma

:... One or more instances separated by a colon

For example:

<a>... Represents a single <a> or any sequence of <a>'s
(e.g., <a> or <a> <a> or <a> <a> <a> <a> etc.)

[<a>...] Represents the null string or any sequence of <a>s

<a>,... Represents a single <a> or any length sequence of
<a>'s separated by commas (e.g., <a> or <a>,<a> or

iv

48

MIL-STD-1589B (USAF)
06 June 1980

<a>,<a>,<a> etc.)

5. If a non-terminal appearing on the right side of the ::- is
not defined in that same sub-section, the number of the
sub-sectlon where it is defineo appears in parentheses in the
right margin.

6. In a "Semantics" or "Constraints" section, non-terminal
symbols are enclosed between < and > when the usage refers to
constructs occurring in a "syntax" section or when the
specific J73 meaning might be confused with generalized
programming usage.

Throughout this document, the symbols used for the prime, the
quotation mark, and a blank are as follows:

i. Prime

2. Quotation mark

3. Blank space

4v

V

49

IIIL-STD-1589B (USAF)
06 June 1980

t vi
1 50

MIL-STD-1589B (USAF)
06 June 1980

TABLE OF CONTENTS

Page

1 .0 Gl-obal-Concepts 1

1.1 The Complete Program 1
1.2 Modules 1

1.2.1 Compool Modules 1

1.2.2 Procedure Nodules 2
1.2.3 Main Program Modules 3
1.2.4 Conditional Compilation 4

1.3 Scope of Names 4
1.4 Implementation Parameters 5

2.0 Declarations 12

2.1 Data Declarations 13

2.1.1 Item Declarations 14

2.1.1 .1 Integer Type Descriptions 15
2.1.1.2 Floating Type Descriptions 16
2.1.1 .3 Fixed Type Descriptions 18

2.1.1.4 Bit Type Descriptions 20

2.1.1 .5 Character Type Descriptions 21
2.1 .1 .6 Status Type Descriptions 21

2.1 .1.7 Pointer Type Descriptions 23

2.1 .2 Table Declarations 24

2.1 .2.1 Table Dimension Lists 25
2.1 .2.2 Table Structure 27
2.1.2.3 Ordinary Table Entries 28
2.1 .2.4 Specified Table Entries 30

2.1.3 Constant Declarations 33
2.1.4 Block Declarations 34
2.1 .5 Allocation of Data Objects 35
2.1 .6 Initialization of Data Objects 36

2.2 Type Declarations 38

2.3 Statement Name Declarations 41

2.4 Define Declarations 41

vii

51

MIL-STD-1589B (USAF)
06 June 1980

2.4.1 Define Calls 43

2.5 External Declarations 45

2.5.1 DEF Specifications 45

2.5.2 REF Specifications 47

2.6 Overlay Declarations 48

2.7 Null Declarations 50

3.0 Procedures and Functions 51

3.1 Procedures 52

3.2 Functions 53
3.3 Parameters of Procedures and Functions 55

3.4 Inline Procedu-es and Functions 58
3.5 Machine-Specifi Procedures and Functions 59

4.0 Statements 61

4.1 Assignment Statements 62

4.2 Loop Statements 63
4.3 IF Statements 66
4.4 CASE Statements 67
4.5 Procedure Call Statements 69

4.6 RETURN Statements 71
4.7 GOTO Statements 71
4.8 EXIT Statements 72
4.9 STOP Statements 72
4.10 ABORT Statements 73

5.0 Formulas 74

5.1 Numeric Formulas 76

5.1.1 Integer Formulas 76

5.1.2 Floating Formulas 78
5.1.3 Fixed Formulas 80

5.2 Bit Formulas 83

5.2.1 Relational Expressions 85
5.2.2 Boolean Formulas 87

5.3 Character Formulas 87
5.4 Status Formulas 88
5.5 Pointer Formulas 88

viii
52

MIL-STD-1589B (USAF)

06 June 1980

5.6 Table Formulas 90

6.0 Data References 91

6.1 Variables 91

6.2 Named Constants 96
6.3 Function Calls 97

6.3.1 LOC Function 98
6.3.2 NEXT Function 99
6.3.3 BIT Function 100
6.3.4 BYTE Function 101

6.3.5 Shift Functions 101
6.3.6 ABS Function 102
6.3.7 Sign Function 102
6.3.8 Size Functions 103
6.3.9 Bounds Functions 104
6.3.10 NWDSEN Function 105
6.3.11 Status Inverse Functions 105

7.0 Type Matchin and Conversions 107

8.0 Basic Elements 116

8.1 Characters 116
8.2 Symbols 118

8.2.1 Names 118
8.2.2 Reserved Words 119
8.2.3 Operators 120

8.2.4 Separators 122

8.3 Literals 123

8.3.1 Numeric Literals 123

8.3.2 Bit Literals 125
8.3.3 Boolean Literals 128
8.3.4 Character Literals 128
8.3.5 Pointer Literals 128

8.4 Comments 129

8.5 Blanks 129

9.0 Directives 130

Ix

53

.~q. -

MIL-STD-1589B (USAF')
06 June 1980

9.1 Compool Directives 131
9.2 Text Directives 132

9.2.1 Copy Directives 132
9.2.2 Skip, Begin, and End Directives 133

9.3 Linkage Directives 133
9.4 Trace Directives 134
9.5 Interference Directives 135
9.6 Reducible Directives 136
9.7 Listing Directives 137

9.7.1 Source-listing Directives 137
9.7.2 Define-listing Directives 137

9.8 Register Directives 138
9.9 Expression Evaluation Order Directives 139
9.10 Initialization Directives 139
9.11 Allocation Order Directives 140

APPENDIX -CROSS REFERENCE INDEX 142

x
54

MIL-STD-1589B (USAF)

06 June 1980

1.0 GLOBAL CONCEPTS

1.1 THE COMPLETE PROGRAM

Syntax:

<complete-program> :: < (module>...

<module> <compool-module> (1.2.1)

I <procedure-module> (1.2.2)

1 <main-program-module> (1.2.3)

Semantics:

A <complete-program> of the J73 language gives the complete
specification of a computational algorithm to be performed. A
<complete-program> consists of a group of one or more <modules> that are
compilable separately and which may be subsequently bound together for
execution as a unit. A <module> Is the smallest entity in the language
that may be separately compiled.

A <complete-program> may contain zero or more <compool-modules> and

zero or more <procedure-modules>.

Constraint:

A <complete-program> must contain exactly one <main-program-
module>.

Note:

A compiler may accept a file containing more than one <module>, but
it is not required to do so. If it does accept such a file, it must
process each <module> as though it had been submitted separately.

1.2 MODULES

1.2.1 COMPOOL MODULES

Syntax:

<compool-module> ::= START [<directive>...] (9.0)
COMPOOL <compool-name>
[<compool-declaration> ... (2.0)
[<directive>...] (9.0)
TERM

1

55

. J
h ,, = I ! , ... li , : 4

MllL-STD-1589E (USAF)

06 June 1980

<compool-name> : = (name> (P.2.1)

Semantics:

<Compool-modules> provide a means of declaring data objects, types,
and subroutines that are to be made external - I.e., that are

potentially available to other <modules> in the <corplete-program>.

Another <module> may access the names declared in a given

<compool-module> by use of a <compool-directive> (see Section 9.1) that

names the given conpool or by use of external declarations (see Section
2.5).

A <compool-module> may contain <compool-directives> that name other
<compool-modules>.

By appropriate use of <def-specifications> and <ref-specifications>

within <compool-declarations>, a user can control whether physical
allocation takes place within the <compool-module> itself or within the

accessing <module> (see Section 2.5).

1.2.2 PROCEDURE M!ODULF.S

Syntax:

<procedure-module> : :- START
[<declaration>...) (2.0)
[<non-nested-subroutine>...]

[<directive>...] (9.0)
TEIh

<non-nested-suhioutine> ::= [<directive>..] (9.0)

[DEF] <subroutine-definition> (3.0)

Semantics:

<Procedure-modules> provide a means of separately compiling

subroutines that specify portions of the actions of the <complete-

program>.

If a <subroutine-definition> is preceded by DEF, that subroutine

ray be invoked from within the <main-program-module> or from within

another <procedure-module>, provided that the referencing module

contains an appropriate <ref-specification> for the subroutine or

accesses a compool containing such a specification.

<Non-nested-subroutines> defined without a DEF may be Invoked only
from within the <procedure-module> or <main-program-nodule> in which

2

56

MIL-STD-1589B (USAF)
06 June 1980

they are defined. Similarly, all declarations in a <procedure-module>
apply only within that <procedure-module> (unless they are
<external-declarations> - see Section 2.5).

1.2.3 MAIN PROGRAM MODULES

Syntax:

<main-program-module> START [<directive>...] (9.0)
PROGRAM
<program-name>
[<directive>...] (9.0)
<program-body>
[<non-nested-subroutine>...] (1.2.2)
[<directive>...] (9.0)
TERN

<program-name> :: < (name> (8.2.1)

<program-body> ::- <statement> (4.0)

I BEGIN [<declaration>...] (2.0)
<statement>... (4.0)
[(<subroutine-definition>...] (3.0)
[<directive>...] (9.0)
[(label>...] END (4.0)

Semantics:

The body of a <main-program-module> is executed at the start of a
<complete-program>. When execution of the body is complete, execution
of the <complete-program> Is complete. Unless the <complete-program>
consists of a single <main-program-module>, the <main-program-module>
will contain one or more <compool-directives>, references to
externally-declared data, and/or calls of DEF'd subroutines in other
modules.

Declarations in a <main-program-module> may be external or
Internal. If a <non-nested-subroutine> has a DEF, it may be invoked
either locally or from within a <procedure-module>, provided that the
referencing module contains an appropriate <ref-specification> for the
subroutine or accesses a compool containing such a specification. If it
does not have a DEF, it can be invoked only from within the module in
which it is defined.

3

57

As __ 4

IIIL-STD-1589B (USAF)

06 June 1980

Constraints:

The <program-body> must contain at least one non-null statement
(e.g., STOP).

1.2.4 CONDITIONAL COMPILATION

Two methods are provided for conditionally suppressing generation
of object code for portions of a JOVIAL module.

The !SKIP, !BEGIN, and !END directives (see Section 9.2.2) permit
almost complete suppression of processing of suppressed source. The
only processing done for suppressed source is to scan for the
terminating !END directive. Therefore the suppressed source may contain
errors and/or statements incompatible with other module source without
affecting compilation.

The IF and CASE statements (see Sections 4.3 and 4.4) permit
suppression of generation of object code. Source for this suppressed
object code must be correct since it is subject to the same validity
checks and processing of directives as other source code. Only code
that is unconditionally unreachable is suppressed so this conditional
compilation must produce the same results as if the code was generated.
Segments of code which are unreachable due to values of <if-statement>
<boolean-formulas> or <case-selector-formulas> which are
<compile-time-formulas> and which do not contain <labels> are always
suppressed. Implementations may choose to do a more complete analysis
and also suppress other recognized unreachable code.

1.3 SCOPE OF NAMES

<Procedure-modules> and the <main-program-module> can contain
subroutines (i.e., procedures and functions) nested to any depth. Each
subroutine, as well as the <program-body> and the <main-program-module>
or <procedure-module> itself, establishes a region or scope for which a
name's declaration is active and in which the <name> can be used. The
scope of a <name> is that region of the <complete-program> within which
that <name> has a single meaning.

A name declared with a DEF or REF (see Section 2.5) is considered
to be external; all other names are internal. An external <name> can be
used in any module of the <complete-program>, except within a scope
containing an internal name with the same spelling. An internal name
can be used only within the subroutine, <procedure-module>, or
<main-program-module> within which that name is declared, but not within
an enclosed scope containing a <name> with the same spelling.

4
58

MIL-STD-1589B (USAF)
06 June 1980

The <name> of a subroutine belongs to the scope in which that
subroutine is declared or defined.

For any given compilation, all names made available from referenced

<compool-modules> (see Section 9.1), as well as the name of the <module>
being compiled and all <compool-names>, belong to the same scope,
referred to as compool scope, which is considered to enclose the scope
established by the <procedure-module>, <main-program-module>, or
<compool-module> being compiled.

System-defined names (e.g., machine-specific subroutines,
implementation parameters) belong to system scope, which encloses the
compool scope. Such names may be redefined by the programmer.

These rules ensure that any two names with the same spelling but
with distinct scopes are regarded as if they were different names.

Constraints:

No two names having the same scope may have the same spelling.
(This constraint does not prevent two tables with different
<table-names> to be declared in the same scope using the same
<table-type-name>. See Sections 2.1.2 and 2.2.)

No two external names may have the same spelling.

1.4 IM.PLEMENTATION PARAMETERS

Syntax:

<integer-machine-
parameter> ::= BITSINBYTE

I BITSINWORD

I LOCSIV WORD

I BYTEPOS
(<complle-time-integer-formula>) (5.1.1)

1 BYTESINWORD

I BITSINPOINTER

I INTPRECISION

I FLOATPRECISION

5

Lj

MIL-STD-1589B (USAF)
06 June 1980

IFIXEDPRECISION

I FLOATRAD1X

I IMPLFLOATPRECISION
< precision>)(2.1.1.2)

IIMPLFIXEDPRECISION
((scale-specifier> ,(2.1.1.3)

(fraction-specifier)(2.1.1.3)

IIMPLINTSIZE
((integer-size>)(2.1.1.1)

I AXFLOATPRECISION

IMAXFIXEDPRECISION

M AX1NTSIZE

IMAXBYTES

IMAXBITS

IMAXINT ((nteger-size>)(2.1.1,A1)

IMININT < integer-size>)(2.1.1.1)

IMAXTABLESIZE

IMAXSTOP

IMINSTOP

IMAXSICDIGITS

H INSIZE (I
(corspile-time-integer-fornula>)(5.1 .1)

MINFRACTION (
<compi le-tirme-f lor~ing-fornu Ia>)(5.1 .2)

IMINSCALE (
(compile-rime-floating-formula>)(5.1.2)

IMINRELPRECISION (
<compile-time-floating-formula)(5.1.2)

4 6

MIL-STD-1589B (USAF)

06 June 1980

<floating-machine-
parameter> ::= MAXFLOAT (precision>) (2.1.1.2)

I MINFLOAT (<precision>) (2.1.1.2)

I FLOATRELPRECI SION

(<precision>) (2.1.1.2)

I FLOATUNDERFLOW
(<precision>) (2.1.1.2)

<fixed-machine-
parameter> MAXFIXED (<scale-specifier> , (2.1.i.3)

<fraction-specifier>) (2.1.1.3)

I MINFIXED (<scale-specifier> , (2.1.1.3)

<fraction-specifier>) (2.1.1.3)

Semantics:

The machine on which a J73 program runs contains an array of memory
cells. These cells are grouped or partitioned into the following units
for purposes of the language specification.

1. Bit - The smallest unit of storage (can contain one of two
values, which are represented by zero and one)

2. Byte - A group of one or more consecutive bits that is capable
of holding a single character of information

3. Word - A memory partition of one or more consecutive bits that
serves as the unit of allocation of data storage

4. Address Unit - The machine dependent unit used to Identify an
address or location in memory

The number of bits per byte, word, and address varies from
implementation to implementation, and these quantities affect the
representation and behavior of data In the language. Machine parameters
are constants that describe these implementation-dependent differences.
The values of these constants must be specified as part of the
implementation of a J73 compiler on any computer. These names can then
be referenced by a user to access the values associated with that
implementation.

The size of an <Integer-machine-parameter> is the size of an
<Integer-literal> having that value. The attributes of a <floating-
machine-parameter> or <fixed-machine-parameter> are as specified by its
<precision> or Its <scale-specifier> and <fraction-specifier>. The

7

61

. ...t. . : , ... 7 . . - . .. -* .. ,1
: '

HIL-STD-1589B (USAF)
06 June 1980

values of the implementation parameters are as follows:

BITSINBYTE Number of bits in a byte

BITSINWORD Number of bits in a word

LOCSINWORD Number of locations (address units)
in a word

BYTEPOS(PP) A permitted <starting-bit> value for

character strings that cross word
boundaries. PP is any integer value
between 0 and BYTESINWORD-1,
inclusive and BYTEPOS(PP) <
BYTEPOS(PP+I).

BYTESINWORD Number of complete bytes in a word

BITSINPOINTER Number of bits used for a pointer
value

INTPRECISION The number of bits that an
implementation supplies to hold the
value of an integer item (exclusive
of sign, if any) when no
<integer-size> is specified by the
programmer.

FLOATPRECISION The number of bits that an
implementation supplies to hold the
value of the mantissa of a floating
point item (exclusive of the sign
bit) when no <precision> is specified
by the programmer

FIXEDPRECISION The number of bits that an
implementation supplies to hold the
value of a fixed item (exclusive of

the sign bit) when no <fraction-
specifier> is supplied by the
programmer

FLOATRADIX Base of the floating point
representation, specified as an
integer

IIIPLFLOATPRECISION(II) Number of bits (not including the
sign bit) in the mantissa of the
representation for a floating point

8

62

- ~.... -

MIL-STD-1589B (USAF)
06 June 1980

value whose specified precision is II

IMPLFIXE)PRECISION(SS,FF) The number of bits (excluding sign
bit) an implementation uses to
represent an unpacked fixed item with

scale SS and fraction FF. This value
also determines the accuracy of fixed
formula results.

IMPLINTSIZE(II) The number of bits (excluding sign
bit) an implementation uses to
represent an unpacked S or U item
with specified size 11.

MAXFLOATPRECISION Maximum specifiable precision
supported by an implementation for a
<floating-item-description>

HAXFIXEDPRECISION Maximum value supported by an
implementation for the sum of the
scale and fraction specifiers in a
(fixed-item-description>

MAXINTSIZE Maximum specifiable size (not
including the sign bit) supported by
an implementation for signed and
unsigned integers

MAXBYTES Maximum value supported by an

implementation for a

<character-size>; must not exceed
MAXBITS/BITSINBYTE

MAXBITS Makimum value supported by an
implementation for a <bit-size>; the
maximum value of words per entry in a
table is MAXBITS/BITSINWORD, and the
maximum BITSIZE of a table entry is
MAXBITS

RAXINT(SS) Maximum integer value representable
in SS+1 bits (including sign bit)

MININT(SS) Minimum signed integer value
representable in SS+1 bits (including
sign bit), using the implementation's
method of representing negative
numbers

9
63

MIL-STD-1589B (USAF)

06 June 1980

MAXTABLESIZE The maximum number of words an

implementation permits a table to

occupy.

AXSTOP Maximum specifiable value for an

<integer-formula> in a <stop-
statement> (see Section 4.9)

MINSTOP Minimum specifiable value for an
<integer-formula> in a <stop-
statement> (see Section 4.9)

MAXSIGDIGITS The maximum number of significant
digits an implementation 4111 process
for a fixed or floating point literal
(see Section 8.3.1)

MINSIZE(II) The minimum value of SS such that II
is less than or equal to MAXINT(SS)

and greater than or equal to
MININT(SS)

MINFRACTION(AA) The minimum value of FF such that

2**(-FF) is less than or equal to AA.
The value of AA must be greater than
zero.

MINSCALE(AA) The minimum value of SS such that

2**SS is greater than AA. The value
of AA must be greater than zero.

MINRELPRECISION(FF) The minimum value of PP such that

FLOATRELPRECISION(PP) is less than or
equal to FF. The value of FF must be
greater than or equal to
FLOATRELPRECISION
(MAXFLOATPRECISION).

MAXFLOAT(PP) Maximum floating point value using
only the first PP mantissa bits
(excluding sign) of the
Implementation's floating point
representation whose actual mantissa
length is IMPLFLOATPRECISION(PP). PP
must be greater than zero and not
exceed MAXFLOATPRECISION.

MTNFLOAT(PP) Minimum floating point value

representable in exactly PP mantissa

10

64

MIL-STD-1589B (USAF)
06 June 1980

bits, (excluding sign) and using the
Implementation's method of
representing negative numbers. PP
must be greater than zero and not
exceed MAXFLOATPRECI SION.

FLOATRELPRECISION(PP) Let FRPI be the smallest floating
point value greater than 1.0 using
the first PP bits (excluding sign) of
the implementation's representation
for floating point values.
FLOATRELPRECISION(PP) equals FRPI -
1.0. PP must be greater than zero
and not exceed MAXFLOATPRECISION.

FLOATUNDERFLOW(PP) The smallest positive floating point

value using exactly PP mantissa bits
(excluding sign) and such that both
FLOATUNDERFLOW(PP) and
-FLOATUNDERFLOW(PP) are representable
as floating point values

MAXFIXED(SS,FF) Maximum fixed value representable in
SS+FF+l bits (including sign bit)

MINFIXED(SSFF) Minimum fixed value representable In
SS+FF+1 bits (including sign bit),

using the implementation's method for
representing negative values

Note:

A FIXEDRADIX implementation parameter is not provided since fixed
point values are represented using radix 2 (see Section 2.1.1.3).

11

65

MIL-STD-1589B (USAF)

06 June 1980

2.0 DECLARATIONS

Syntax:

<declaration> := <data-declaration> (2.1)

<type-declaration> (2.2)

<subroutine-declaration> (3.0)

<statement-name-declaration> (2.3)

<define-declaration> (2.4)

<external-declaration> (2.5)

<overlay-declaration> (2.6)

<inline-declaration> (3.4)

<null-declaration> (2.7)

BEGIN <declaration> ...
END

I <directive> (declaration> (9.0)

<compool-declaration> ::= <external-declaration> (2.5)

<constant-declaration> (2.1.3)

<type-declaration> (2.2)

<define-declaration> (2.4)

(overlay-declaration> (2.6)

(null-declaration> (2.7)

BEGIN <compool-declaration>...

EN1n

<directive> (9.0)

(compool-declaration>

Semantics:

<Declarations> associate (names> with programmer-supplied meanings.

12

66

EEL-

MIL-STD-1589B (USAF)
06 June 1980

A <compool-declaration> is a <declaration> that appears In a
<compool-module>.

Constralnts

Except for <statement-names>, names of subroutines, type nameg In
<pointer-item-descriptions>, and formal parameter names, a name may not
be used prior to the point at which a <declaration> for that name
appears.

2.1 DATA DECLARATIONS

Syntax:

<data-declaration> <item-declaration> (2.1.1)

I <table-declaration> (2.1.2)

<constant-declaration> (2.1.3)

I <block-declaration> (2.1.4)

Semantics:

<Data-declarations> declare <data-names> and their attributes.
Three kinds of data structures exist in J73:

1. Item - A simple data object of the language. An item is a
variable of a pre-defined or programmer-defined type having no
constituents.

2. Table - An aggregate data object consisting of a collection of
one or more items, or an array of such collections. The
collection of items is called an entry. An entire entry in a
table is selected by the use of the table name, together with
a sequence of indices ("subscripts") if the table is arrayed.
An item within an entry is selected by the use of the item
name and the appropriate number of subscripts.

3. Block - A group of items and tables and other blocks to which
is allocated a contiguous area of storage.

Additionally, an item or table may be declared to be CONSTANT, in
which case its value cannot be changed during execution. A constant
item must be given an initial value by means of an <item-preset>.
Blocks, items, or tables (other than constants) can specify, by means of
an <allocation-specifier>, the allocation permanence of the storage
associated with their names. Non-constant items and tables can

13

67

_ _ _ _._ I-- .

MIL-STD-1589B (USAF)
06 June 1980

optionally be given initial values by means of <item-presets> or

<table-presets>.

The value of an uninitialized data object Is undefined until it

receives a value in an executable statement.

Declarations associate a <name> with a type. A type determines the

set of yalues that an object can have and the operations that can be

performed on those values. Types are grouped into related sets called

type classes. Examples of type classes are signed integer, unsigned

Integer, float, and bit. Types within a type class are distinguished by

the values of certain properties known as attributes. For example, S 3

is a particular type within type class S with a value of 3 for the

integer size attribute. Rules concerning type matching are found in

Section 7.0.

2.1.1 ITEM DECLARATIONS

Syntax:

<item-declaration> :: ITEM <item-name>
[<allocation-specifier>] (2.1.5)

<item-type-description>
[<item-preset>] ; (2.1.6)

<item-name> : <name> (8.2.1)

<item-type-description> :: <integer-type-description> (2.1.1.1)

<floating-type-description> (2.1.1.2)

I <fixed-type-description> (2.1.1.3)

<bit-type-description> (2.1.1.4)

<character-type-description> (2.1.1.5)

<status-type-description> (2.1.1.6)

<pointer-type-description> (2.1.1.7)

Semantics:

<Item-declarations> declare items. Items are used as variables to

retain values in a J73 program. Allocation for items declared in

<Item-declarations> will be such that no items share a word.

14

68

MIL-STD-1589B (USAF)
06 June 1980

The <item-type-descriptIon> establishes the type of an item.

The <allocation-specifier> establishes the allocation permanence of
Items which are not enclosed in blocks. This allocation permanence is
automatic if the declaration is in a subroutine and the
<allocation-speclfler> is omitted, otherwise it is STATIC (see Section
2.1.5). Items enclosed in blocks inherit the allocation permanence of
the enclosing block.

The <item-preset>, if present, specifies an initial value for the
item.

Constraints:

Only items having STATIC allocation (explicitly or by default) may
contain an <item-preset>.

Declarations of items that are <formal-input-parameters> or
<formal-output-parameters> (see Section 3.3) must not contain an
<allocation-specifier> or <item-preset>.

An <item-declaration> within a block must not contain an
<allocation-specifier>.

2.1.1.1 INTEGER TYPE DESCRIPTIONS

Syntax:

<integer-type- := <integer-item-description>
description>

I <integer-type-name>

<integer-item- :: S [<round-or-truncate>] (2.1.1.2)
description> [<integer-size>]

I 11 [round-or-truncate>] (2.1.1.2)
[er-size>]

<integer-size> _.omt -.-. me-integer-formula> (5.1.1)

<Integer-type-name> ::= <item-type-name> (2.2)

Semantics:

An <integer-type-description> is used to specify a signed integer
type or an unsigned integer type. S specifies a signed integer type; U
specifies an unsigned integer type.

15
691

MIL-STD-1589B (USAF)

06 June 1980

The <integer-slze> attribute specifies the minimum number of bits

of storage required to hold the maximum value of the integer (excluding

the sign, if any). If <integer-size> is omitted, it defaults to

INTPRECISION. The number of bits allocated for signed integers will be

at least <integer-size>+l, and for unsigned integers will be at least

<integer-size>.

The value set for a signed integer type with size SS is MININT(SS)

through MAXINT(SS). The value set for an unsigned integer type with

size SS is 0 through MAXINT(SS).

The <round-or-truncate> attribute specifies truncation or rounding

is to occur when a value is converted to an integer type. If R is

specified, rounding will occur. If T is specified, truncation towards

minus infinity will occur. If Z is specified, truncation towards zero

will occur. If the attribute is omitted, truncation in an

implementation-dependent manner will occur.

Constraints:

The maximum value that can be specified for <Integer-size> is

MAXINTSIZE, an implementation parameter.

<Integer-size> must be greater than zero.

An (integer-type-name> must be an <item-type-name> declared in an

<Item-type-declaration> that contains an <integer-type-description> (see

Section 2.2).

Notes:

An implementation may choose MAXINTSIZE > BITSINWORD-I.

The <round-or-truncate> option has a use only when an

<integer-item-description> is used in an <integer-conversion> (see

Section 7.0).

2.1.1.2 FLOATING TYPE DESCRIPTIONS

Syntax:

<floating-type-description> ::- <floating-item-description>

I <floating-type-name>

<floating-item-description> ::" F [<round-or-truncate>]
[<precision>]

16

70

MIL-STD-1589B (USAF)

06 June 1980

<round-or-truncate> :: , R

I , T

I ,Z

<precision> := <compile-time-integer-formula>(5.1.1)

<floating-type-name> :: <item-type-name> (2.2)

Semantics:

A <floating-type-description> is used to specify a floating type.
The <precision> attribute specifies the minimum number of bits of
storage required to hold the value of the mantissa. If <precision> is
omitted, it defaults to FLOATPRECISION, an implementation parameter.

The <round-or-truncate> attribute is used to specify whether
truncation or rounding is to occur when a value of a floating type with
a greater <precision> is assigned to an item of this ype. If R is
specified, rounding will occur. If T is specified, Lmuncation towards
minus infinity will occur. If Z is specified, truncation towards zero
will occur. If the attribute is omitted, truncation in an

implementation-dependent manner will occur. Rounding and truncation
take place with respect to the implemented precision of the floating
type. (Note: IMPLFLOATPRECISION(PP) is an implementation parameter
defining what precision is provided when precision PP is specified.)

The value set for a floating type with <precision> PP is
MINFLOAT(PP) through -FLOATUNDERFLOW(PP), 0, and FLOATUNDERFLOW(PP)
through MAXFLOAT(PP).

Constraints:

The maximum value that can be specified for <precision> is
MAXFLOATPRECISION, an implementation parameter.

<Precision> must be greater than zero.

A <floating-type-name> must be an <item-type-name> declared in an

<item-type-declaration> that contains a <floating-type-description> (see

Section 2.2).

Note:

Since a <floating-type-description> specifies only the minimum
prec'sion required, an implementation is free to support only one or two

levels of implemented precision. Which implemented precision level
represents a floating type depends on the value of the specified

17

71

MIL-STD-1589B (USAF)

06 June 1980

precision. The implemented precision must never be less than the
specified precision. Since an Implementation may provide more than the

specified precision, It is consistent to round or truncate a represented
value only if converting from a longer to a shorter Implemented

precision.

2.1.1.3 FIXED TYPE DESCRIPTIONS

Syntax:

<fixed-type-description> : <fixed-item-description>

I <fixed-type-name>

<fixed-item-description> :: A [<round-or-truncate>] (2.1.1.2)
<scale-specifier>

[, <fraction-specifier>]

<scale-specifier> <compile-tme-integer-formula>(5.1.1)

<fraction-specifier> <compile-time-integer-formula>(5.1.1)

(fixed-type-name> <item-type-name> (2.2)

Semantics:

A <fixed-type-description> is used to specify a fixed point numeric
type. If SS is the value of the <scale-specifier> and FF is the value

of the <fraction-specifier>, then SS+FF is the minimum number of bits in
the representation, excluding the sign bit. When SS and FF are both
positive, SS specifies the number of bits to the left of the binary
point (excluding the sign bit) and FF the minimum number of bits to the
right (see Note below). When SS is negative, the binary point is
assumed to be ABS(SS) bits to the left of the first (non-sign) bit of

the representation. Similarly, when FF is negative, the least
significant bit of the representation is no more than ABS(FF) bits to

the left of the binary point.

The (nominal) precision of a fixed point type is the sum of its
scale and fraction specifier. The Implemented precision may be greater

than the nominal bits required. If <fraction-specifier> is omitted, the
fixed point type has a default precision given by FIXEDPRECISION, an
implementation parameter, and the implied value of the omitted
<fraction-specifier> is FIXEDPRECISION-SS, where SS is the <scale-

specifier>.

If FF Is a fixed point item declared with a default

<fraction-specifier>, then FIXEDPRECISION = BITSIZE(REP(FF))-1.

18

72

MIL-STD-1589B (USAF)

06 June 1980

The <round-or-truncate> attribute specifies truncation or rounding

is to occur when a value is converted to a fixed point type. If R is
specified, rounding will occur. If T is specified, truncation towards
minus infinity will occur. If Z is specified, truncation towards zero
will occur. If the attribute is omitted, truncation in an
implementation-dependent manner will occur. Rounding and truncation
take place with respect to the implemented precision of the fixed type
(see Note below).

The value set of a fixed point type with scale SS and fraction FF
is MINFIXED(SS,FF) through MAXFIXED(SS,FF).

Constraints:

The sum of the scale and fraction specifiers (i.e., the nominal
precision) must be greater than zero and must not exceed
MAXFIXEDPRECISION, an implementation parameter.

The value of <scale-specifier> must lie in the range -127 through
+127.

A <fixed-type-name> must be an <item-type-name> declared in an
<Item-type-declaration> that contains a <fixed-type-description> (see

Section 2.2).

Notes:

The set of exactly representable fixed point values is determined
by a fixed type's scale and fraction specifiers. A <fraction-

specifier> value, FF, means fixed point values must be represented with

a precision greater than or equal to 2**(-FF). A <scale-specifier>
value, SS, means the maximum representable value is at least 2**SS -

2**(-FF) and less than 2**SS.

An implementation is permitted to support more than one level of
implemented precision for fixed point types. For computational
purposes, values will be represented using the smallest implemented
precision level (e.g., one word or two words) consistent with the

value's nominal precision. For storage purposes in packed tables, a
fixed point value need occupy no more than the number of bits specified

by the nominal precision plus one bit for the sign.

IMPLFIXEDPRECISION(SS,FF) is an implementation parameter defining
what precision is provided for an unpacked fixed point item when nominal

precision SS+FF is specified. In addition, the implemented precision of

a packed item (i.e., an item in a specified table, packed ordinary

table, or a tight table) as well as an unpacked item is given by
BITSIZE(REP(FI))-I, where F1 is the fixed point item.

19

73

-"_M,

MIL-STD-1589B (USAF)
06 June 1980

The implemented precision of a fixed item is the number of bits
(excluding sign bit) uszd to store the item. Assignments to such items
round or truncate with respect to this precision, which is never less
than the specified precision. Rounding or truncation can change a fixed

point value only if the implemented precision is shortened.

It should be noted that specifying R, T, or Z in an item
declaration only affects the conversion of literal values (see Section
8.3.1) and assignments of fixed point values when the stored
representation of the value is shorter than the representation used for
computations.

2.1.1.4 BIT TYPE DESCRIPTIONS

Syntax:

<bit-type-description> <bit-item-description>

I <bit-type-name>

<bit-item-description> B [<bit-size>]

<blt-size> :- <compile-time-integer-formula> (5.1.1)

<bit-type-name> ::- <item-type-name> (2.2)

Semantics:

A <bit-type-descriptlon> is used to specify a bit string type. The
<bit-size> attribute specifies the number oi pits in the string. If
<bit--size> is omitted it defaults to 1.

Constraints:

The maximum value that can be specified for <bit-size> is MAXBITS,
an implementation parameter. The minimum value that can be specified
for <bit-size> is one.

A <bit-type-name> must be an <item-type-name> declared in an
<item-type-declaration> that contains a <bit-type-description> (see
Section 2.2).

2f)

74

MIL-STD-1589B (USAF)

06 June 1980

2.1.1.5 CHARACTER TYPE DESCRIPTIONS

Syntax:

<character-type-description> : <character-item-description>

<character-type-name>

<character-item-description> C [<character-size>]

<character-size> :: < compile-tlme-lnteger-formula>(5.1.1)

<character-type-name> :: (item-type-name> (2.2)

Semantics:

A <character-type-description> is used to specify a fixed-length
character string type. The <character-size> attribute specifies the
number of characters in the string. If <character-size> is omitted it
defaults to 1.

Constraints:

The maximum value that can be specified for <character-size> is
MAXBYTES, an implementation parameter. The minimum value that can be
specified for <character-size> is one.

A <character-type-name> must be an <item-type-name> declared in an
<item-type-declaration> that contains a <character-type-description>
(see Section 2.2).

2.1.1.6 STATUS TYPE DESCRIPTIONS

Syntax:

<status-type-description> :: <status-item-description>

I <status-type-name>

<status-item-description> ::= STATUS [<status-size>]
(<status-list>)

<status-list> ::= <default-sublist>

I [<default-sublist> ,J
<specified-sublist>,...

21

75

MIL-STD-1589B (USAF)

06 June 1980

<default-sublist> :: <status-constant>,...

<specified-sublist> :- <status-list-index>
<status-constant>,...

<status-list-index> ::= <compile-time-integer-formula> (5.1.1)

<status-constant> V (<status>)

<status> ::= <name> (8.2.1)

I (letter> (8.1)

I <reserved-word> (8.2.2)

<status-type-name> :: <item-type-name> (2.2)

<status-size> <compile-time-integer-formula> (5.1.1)

Semantics:

A <status-type-description> is used to specify a status type. The
<status-list> is used to define the value set of the type, which
consists of a set of named <status-constants>. These named
<status-constants> are considered to be the logical values of the status
type. Associated with each logical value is a representational value,
I.e., how the value is actually represented internally. If the
<status-list> contains only a <default-sublist>, the status type is said
to have a default representation. The <status-constants> in the
<default-sublist> will be assigned representational values 0 through N-1
(where N is the number of <status-constants> in the sublist) in the
order in which they are specified in the list. The <status-constants>
in each <specified-sublist> will be assigned representational values
<status-list-index> through <status-list-index> + N-I (where N is the
number of <status-constants> in the sublist) in the order In which they
are specified.

For a given <status-list>, the value of any <staLus-constant> is
considered to be greater than the value of another <status-constant>
having a lower representational value.

<Status-size> specifies the minimum number of bits to be allocated
to hold the status value (excluding the sign bit, if any). If it is
omitted, it defaults to the minimum needed for the representation as an
integer value. If the representation of the lowest-valued
<status-constant> in the list is less than zero, signed integer
representation will be used; otherwise, unsigned integer representation
will be used.

22

76

I N 1 11 11

MIL-STD-1589B (USAF)
06 June 1980

Constraints:

The <status-constants> must be unique within the <status-list>.

The <status-lIst-indices> within a <status-list> must be specified
such that all the <status-constants> in the <status-list> receive unique
representational values.

The value specified in <status-size> must be greater than or equal
to the minimum needed for the representation of the status values and
less than or equal to MAXINTSIZE.

The representation of a status value cannot be less than MININT
(BITSINWORD-1) and it cannot exceed MAXINT(BITSINWORD-I).

A <status-type-name> must be an <item-type-name> declared in an
<item-type-declaration> that contains a <status-type-description> (see
Section 2.2).

Note:

The use of a <name> in a <status> does not constitute a declaration
of the <name> or a reference to a declared <name> having the same
spelling. Within a given scope, a <status> <name> and a declared <name>
can have the same spelling and no conflict will result.

2.1.1.7 POINTER TYPE DESCRIPTIONS

Syntax:

<pointer-type-description> ::= <pointer-item-description>

<pointer-type-name>

<pointer-item-description> ::= P [<type-name>]

<pointer-type-name> ::= <item-type-name> (2.2)

<type-name> ::= <item-type-name> (2.2)

I <table-type-name> (2.2'

I, <block-type-name> (2.2)

Semantics:

A <pointer-type-description> is used to specify a pointer type. If
the <pointer-item-description> contains a <type-name>, then the pointer

23

NIL-STD-i589B (USAF)
06 June 1980

being specified is a typed pointer. If the <type-name> is cmitted, then
the pointer is an untyped pointer.

A typed pointer contains the address of a data object of the type

specified by the <type-name>. The object being pointed to may be
obtained by dereferencing the pointer (see Section 6.1).

An untyped pointer contains the address of a data objec,- of any
type. However, such a pointer must be converted to a typed pc.,'ter (see
Section 7.0) before it may be dereferenced or assigned a typed
pointer.

Constraint:

A <pointer-type-name> must be an <item-type-name> declared in an
(item-type-declaration> that contains a <pointer-type-description> (see

Section 2.2).

2.1.2 TABLE DECLARATIONS

Syntax:

<table-declaration> TABLE <table-name>
[<allocation-specifier>] (2.1.5)
[<dimension-list>] (2.1.2.1)

table-description>

<table-description> :: [<structure-specifier>] (2.1.2.2)

<entry-specifier>

I <table-type-name> (2.2)

[<table-preset>] ; (2.1.6)

<entry-specifier> ::= <ordinary-entry-specifier> (2.1.2.3)

I <specified-entry-specifier> (2.1.2.4)

<table-name> ::= <name> (8.2.1)

Semantics:

<Table-declarations> declare named aggregate data objects. The

presence of a <dimension-list> indicates that the table is an arrayed

collection of entries. The <dimension-list> specifies the range of

indices of the array.

The <allocation-specifier> establishes the allocation permanence of

tables which are not enclosed in blocks. This allocation permanence is

24

78

MIL-STD-1589B (USAF)
06 June 1980

automatic if the declaration is in a subroutine and the
<allocation-specifier> is omitted, otherwise it is STATIC (see Section
2.1.5). Tables enclosed in blocks inherit the allocation permanence of
the enclosing block.

The <table-description> describes the contents of the table either
with a <table-type-name> (see Section 2.2) or with an <entry-specifier>.
Two or more tables may be declared in the same scope using the same
<table-type-name>, and no name conflicts of the contained items will
result, provided the <table-names> are different. Items in tables
declared with a <table-type-name> can only be accessed using pointers to
the tables (see Section 6.1).

A table may either be an ordinary table, in which only the logical
structure is described (see Section 2.1.2.3) or a specified table, in
which the detailed physical layout of the table is described (see
Section 2.1.2.4).

A <structure-specifier> Is used to specify the representation of
entries in a dimensioned table (see Section 2.1.2.2).

The <table-preset>, if present, specifies initial values for the
table components. For <table-descriptions> containing an <entry-
specifier> rather than a <table-type-name>, the <table-preset> is part
of the <entry-specifier> (see Section 2.1.2.3 and 2.1.2.4).

Constraints:

Only tables having STATIC allocation (explicitly or by-default) may
contain a <table-preset>.

Tables that are <formal-input-parameters> or <formal-output-
parameters> (see Section 3.3) must not contain an <allocation-specifier>
or <table-preset>.

A <table-declaration> within a block must not contain an
<allocation-specifier>.

A dimensioned <table-declaration> must not contain a <table-type-

name> whose declaration also contains a <dimension-list>.

A <structure-speclfier> in an undimensioned table is prohibited.

2.1.2.1 TABLE DIMENSION LISTS

Syntax:

25

79

MIL-STD-1589B (USAF)

06 June 1980

<dimension-list> ::= (<dimension>,...)

<dimension> ;: [<lower-bound-option>]

<upper-bound>

I *

<lower-bound-option> <lower-bound>

<lower-bound> :: < (compile-time-integer-formula> (5.1.1)

< (compile-time-status-formula> (5.4)

<upper-bound> <compile-time-integer-formula> (5.1.1)

I <compile-time-status-formula> (5.4)

Semantics:

A <dimension-list> specifies that a table is an array. Each

<dimension> specifies the range of values for that dimension. If the
<lower-bound> is omitted, it defaults to zero if the <upper-hound> is an
integer; if the <upper-bound> is a status value, it defaults to the
first <status-constant> in the status type of the <upper-bound>.

A <dimension> of * that appears with a formal parameter means the

bounds will be determined from the actual parameter on each invccation.
(Note that in accordance with Sections 6.3.9 and 6.1, bounds of *

dimensions range from 0 to NN-1, where NN is the number of elements in
the corresponding dimension of the actual parameter, regardless of what
the lower and upper bounds values are for the actual parameter or

whether the bound has an integer or status type.)

Constraints:

Only status types with default representations may be used in
<dimensions>.

The <lower-bound> must be less than or equal to the <upper-bound>.

The <lower-bound> and <upper-bound> must both be status formulas

of the same type or both be integer formulas.

The maximum number of <dimensiJ s> Is seven.

A <dimension> of * may be used only with a table formal parameter.

If any <dimension> of a table formal parameter is specified as
they all must be specified as

26

80

MIL-STD-1589B (USAF)
06 June 1980

The number of words occupied by a table must not exceed
MAXTABLESIZE.

2.1.2.2 TABLE STRUCTURE

Syntax:

<structure-specifier> ::= PARALLEL

[T [<bits-per-entry>]

(bits-per-entry> ::= <complle-tIme-Integer-formula> (5.1.1)

Semantics:

Dimensioned tables can have a parallel or serial structure. In
addition, a serial table may be tightly structured. The
<structure-specifier> specifies the table structure.

A <structure-specifier> PARALLEL indicates parallel structure. For
tables with parallel structure, the first word (word 0) of each entry is
allocated consecutively, then word one, etc. An omitted
<structure-specifier> or one with T indicates serial structure. For
tables with a serial structure, all words of the first entry are
allocated consecutively, then all words of the next entry, etc. Entries
In both parallel and serial tables are arranged such that the rightmost
indices vary fastest, from the lower bound to the upper bound.

A <structure-specifier> of T indicates tight structure (in addition

to serial structure). Tight structure defines the allocation of storage
between entries in a dimensioned (ordinary or specified) table, whereas
packing (see Section 2.1.2.3) defines the allocation of storage within
an entry of an ordinary table. Tight structure indicates that multiple
entries of a dimensioned table are to be stored within a single word

such that no entry crosses a word boundary. <Bits-per-entry> specifies
the number of bits each entry is to occupy. If it is omitted, it will
default to the minimum number of bits needed to store the entry.

Entries in tightly-structured tables are right-justified in the
bits allotted.

Entries in tables without a <structure-specifier> of T shall not
share a word.

Constraints:

<Bits-per-entry> must be equal to or greater than the minimum
number of bits needed to store the entry.

27

81.

MIL-STD-1589B (USAF)

06 June 1980

The explicit or default value of <bits-per-entry> must be less than

or equal to BITSINWORD.

Items in a parallel table must not cross word boundaries.

A parallel table must contain a <dimension-list>.

2.1.2.3 ORDINARY TABLE ENTRIES

Synt ax:

<ordinary-entry-
specifier> :- [<packing-specifier>]

(Item-type-description> (2.1.1)
[<table-preset>] ; (2.1.6)

[<packing-specifier>]
[<table-preset>] ; (2.1.6)
<ordinary-table-body>

<packing-specifier> ::=N

IM

ID

<ordinary-table-body> ::= <ordinary-table-item-declaration>

BEGIN
<ordinary-table-options>...
END

<ordinary-table-item-
declaration> ::- ITEM <table-item-name>

<item-type-description> (2.1.1)

[<packing-specifier>]
k[table-preset>] ; (2.1.6)

<table-item-name> ::- <name> (8.2.1)

<ordinary-table-options> <ordinary-table-i tem-declaration>

I <directive> (9.0)

I <null-declaration> (2.7)

28

82

MIL-STD-1589B (USAF)
06 June 1980

Semantics:

An <ordinary-entry-specifier> is used to specify the contents of an
entry of an ordinary table.

No allocation order is implied by the order of items in the
<ordinary-table-options> unless the <ordinary-table-options> contains an
<order-directive>. If an <order-directive> is not in effect,
<ordinary-table-options> will be reordered, if necessary, to reduce the
storage occupied by an entry, consistent with the <packing-specifier>.
Tables having the same type will have the same representation.

The <packing-specifier> specifies the density with which items are
allocated within an entry. The following three degrees of packing can
be specified:

1. N indicates that the items are not packed. No items share a
word.

2. M indicates a density of packing that can be between N and D.
The exact meaning is implementation-dependent, and is
specified to be an effective compromise between space usage
and accessing ease.

3. D indicates dense packing. Items are allocated adjacent bits
in a word with the following exceptions:

a. Non-character items one word or longer start on a
word boundary. Shorter non-character items do not

cross word boundaries.

b. Each byte of a character item which crosses a word
boundary must be allocated on a byte boundary. An
implementation may (but need not) allocate the bytes
of other character items on byte boundaries.

A <packing-specifier> preceding an <ordinary-table-body> in an
<ordinary-entry-specifier> applies to all items in the <ordinary-
table-body> that do not themselves include a <packing-specifier> in
their declaration.

Default packing for a tightly-structured table (see Section
2.1.2.2) is D; for all other tables, it is N.

The value of uallocated bits in an <ordinary-entry-specifler> is
implementation-dependent.

The <table-preset>, if present, specifies initial values for the

table entries.

29

83

MIL-STD-1589B (USAF)
06 June 1980

Constraints:

Only tables having STATIC allocation (implicitly or explicitly) may

contain a <table-preset>.

Declaration of table <formal-input-parameters> or

<formal-output-parameters> (see Section 3.3) must not contain
<table-presets>.

If a <table-preset> precedes the <ordinary-table-body>, none of the

<ordinary-table-item-declarations> in the <ordinary-table-body> can
contain a <table-preset>.

An <ordinary-entry-specifier> used in a <table-type-declaration>
(see Section 2.2) must not contain a <table-preset>.

An <ordinary-table-options> must contain at least one <ordinary-
table-item-declaration>.

A <packing-speciffer> of N is permitted in a tightly-structured
table only if the table entry contains only one item.

The number of words allocated foi a table entry must not exceed

NAXBITS/BITSINWORD.

2.1.2.4 SPECIFIED TABLE ENTRIES

Syntax:

<specified-entry-
specifier> ::= <words-per-entry>

<specified-item-description>
[<table-preset>] ; (2.1.6)

I <words-per-entry>
[<table-preset)] ; (2.1.6)

<specified-table-body>

<words-per-entry> :: W [<entry-size>]

I v

<entry-size> :: < compile-time-integer-formula> (5.1.1)

<specified-item-
description> ::= <item-type-description) POS (2.1.1)

((location-specifier>)

4 30

84

.

M]L-STD-1589B (USAF)
06 June 1980

(location-specifier> <starting-bit>

<starting-word>

<starting-bit> <compile-time-integer-formula> (5.1.1)

I *

<starting-word> <compile-time-integer-formula> (5.1.1)

<specified-table-body> <specified-table-item-declaration>

I BEGIN
<specified-table-options>...

END

<specified-tatlc-item-
declaration ::= ITEM <table-iten-name> (2.1.2.3)

<specified-It em-description>

[<table-preset>] ; (2.1.6)

<specified-table> <specified-table-item-declaration>

options>

<directive> (9.0)

<null-declaration> (2.7)

Semantics:

A <specified-entry-specifier> is used to specify the contents of an
entry of a specified table.

<Words-per-entry> specifies the size of (1.e, number of words in)
each entry in the table. <Words-per-entry> containing a W indicates a
fixed-length-entry specified table whereas V indicates a
variable-length-entry specified table. In a fixed-length-entry

specified table, <entry-size> (if present) specifies the number of words

allocated to each entry in the table. In a tightly-structured table (in
which <entry-size> must be omittud), the size of the entry is determined

from the <structure-specifier>. In a variable-length-entry specified
table, each entry is allocated one word.

The <location-specifier> specifies the physical location of the
Item from the start of the entry. <Starting-word> indicates at which

word of the entry, starting from zero, the item is to start, and
<starting-bit> indicates at which bit in the word, starting from zero at
the leftmost part of the word, the item is to start. In the case of
entries In tightly structured tables, <starting-bit> is considered to be

relative to the start of the entry. A <starting-bit> of * indicates

31

85 j

MIL-STD-1589B (USAF)
06 June 1980

that the item should occupy the same amount of storage and be aligned in
the same way it would if it were alltcated outside a table, in order to

ensure efficient access to the item. These rules apply to both

fixed-length-entry and to variable-length-entry specified tables.
Consequently, in a variable-length-entry table, reference to an item
with subscript NN will reference that item relative to the start of the

NNth entry, where each entry is considered to be one word long (i.e., a
subscript of NN does not refer to the NNth logical entry in that table).
It is entirely up to the programmer to keep track of the actual length
of logical entries in such tables.

The <table-preset>, if present, specifies initial values for the
table entries.

The value of unallocated bits in a (specified-table-entry> is
implementation-dependent.

Constraints:

<Entry-size> must be omitted on tightly-structured tables and must
be present otherwise.

<Entry-size> must be greater than zero and less than or equal to
MAXBITS/BITSINWORD.

<Starting-word> must be non-negative. For items in tables with
entry sizes specified by <entry-size>, (starting-word> plus number of
words occupied by the item must not exceed <entry-size>. For tightly
structured tables <starting-word> must be zero.

<Starting-bit> must be non-negative and must not cause item
Hi position to violate other positioning constraints. For non-tightly

structured tables it must also be less than BITSINWORD. For tightly
structured tables <starting-bit> plus number of bits occupied by t'he
item must not exceed (bits-per-entry>.

Only tables having STATIC allocation (implicitly or explicitly) may

contain a (table-preset>.

Tables that are (formal-input-parameters> or

<formal-output-parameters> (see Section 3.3) muvt not contain a

<table-preset>.

If a <table-preset> precedes the <specified-table-body>, none of
the <specified-table-item-declarations> in the <specified-table-body>
can contain a <table-preset>. If any part of an item in a
<specified-table-body> overlaps any part of another item in the table
body, only one of the items can be preset.

32

86

MIL-STD-1589B (USAF)

06 June 1980

A <specified-entiy-specifier> used in a <table-type-declaration>

(see Section 2.2) must not contain a <table-preset>.

A <specified-table-options> must contain at least one <specified-
table-item-declaration>.

Non-character items whose size is one word or less cannot cross a

word boundary. Character items, regardless of length, may start on any

byte boundary, i.e., any value of the machine parameter BYTEPOS. Any

<starting-bit> value is permitted for character items that do not cross

word boundaries.

An implementation may restrict legal <starting-bit> values for

pointer items that are initialized.

V3riable-length-entry specified tables must contain a

<specified-table-body>, and they cannot contain <table-presets> or
<structure-specifiers>.

2.1.3 CONSTANT DECLARATIONS

Syntax:

<constant-declaration> CONSTANT ITEM
<constant-item-name>
(item-type-description> (2.1.1)
<item-preset> ; (2.1.6)

I CONSTANT TABLE

[<dimension-list>] (2.1.2.1)
(table-description) (2.1.2)

<constant-item-name> <name> (8.2.1)

<constant-table-name> <name> (8.2.1)

Sem-ant ics:

A <constant-declaration> creates an Item or table whose value must

be set by means of an <item-preset> or (table-preset> and whose value

cannot be changed during execution of a program. The value of a

constant item whose type class is not pointer can be used in a

<compile-time-formula> (see Section 5.0). The value of a constant table

or an item within a constant table may not be used in a

<compile-time-formula>.

13

87

ADAIO0 577 AERONAUTICAL SYSTEMS DIV WRIGHT-PATTERSON AFS OH F/B 1/3

AFSC STANDARDIZATION CONFERENCE, 1553. 1589, 1750, 1760, ADA, N-ETC(U)
NOV 80 E C GANGH, S E SMITH

UNCLASS!FTFn ASO-TR-80"50VOL-2 Nt

EhhIh~Eh
E/iEl/I/I/IllE
//IEEi/liB/lE
IIIIIIIIIIIEEE
IIEEEIIIIEIII
EEIIIIEIIIIIIE

MIL-STD-1589B (USAF)
06 June 1980

Physical storage will be allocated for all <constant-declaratlons>
that are in <block-declarations>.

The allocation permanence of all allocated <constant-declarations>
is considered to be STATIC, even if the declarations appear in a
<subroutine-definitlon>.

2.1.4 BLOCK DECLARATIONS

Syntax:

<block-declaratlon> :: BLOCK <block-name>
[<allocation-speclfier>] ; (2.1.5)
<block-body-part>

BLOCK <block-name>
[<allocation-specifier>] (2.1.5)
<block-type-name> (2.2)
[<block-preset>] ; (2.1.6)

<block-name> <name> (8.2.1)

<block-body-part> := <null-declaration> (2.7)

<data-declaration> (2.1)

I BEGIN
<block-body-options>...
END (9.0)

<block-body-options> <data-declaration> (2.1)

I <overlay-declaration> (2.6)

I <directive> (9.0)

I <null-declaration> (2.7)

Semantics:

A <block-declaration> declares a group of items, tables, and other
blocks that are to be allocated in a contiguous area of storage. No
allocation order is implied by the order of the declarations within a
block unless the <block-body-options> contains an <order-directive>. If
an <order-directive> is not in effect, <block-body-options> will be
reordered, if necessary, to improve accessibility.

34

88

HIL-STD-1589B (USAF)
06 Junn 1980

The <allocation-specifier> establishes the allocation permanence of
blocks which are not enclosed in blocks. This allocation permanence is
automatic if the declaration is in a subroutiue and the
<allocation-specifier> is omitted, otherwise it is STATIC (see Section
2.1.5). Blocks enclosed in blocks inherit the allocation permanence of
the enclosing block.

The <block-declaration> describes the contents of the block either
with a <block-type-name> (see Section 2.2) or with a <block-body-part>.
The <block-body-part> contains explicit declarations of all the
components of the block.

The (block-preset>, if present, specifies initial values for the
block components. For <block-declarations> containing a <block-body-
part> rather than a <block-type-name>, initial values may be specified
with <block-presets>, <table-presets> and <Item-presets> on the
components themselves.

Constraints:

Only blocks having STATIC allocation (explicitly or by default) may
contain a <block-preset> or a <data-declaration> containing an <item-
preset>, <table-preset> or <block-preset>.

If a <constant-declaration> Is in a block, the block must have
STATIC allocation (explicitly or by default).

<Data-declaratlons> within a block must not contain an <allocation-
specifier>.

Blocks that are <formal-Input-parameters> or <formal-output-
parameters> (see Section 3.3) must not contain an <allocation-
specifier>, a <block-preset> or a <data-declaration> with an
<item-preset>, <table-preset>, or <block-preset>.

Components of blocks declared with a <block-type-name> may be
accessed only by using pointers to the blocks.

2.1.5 ALLOCATION OF DATA OBJECTS

Syntax:

<allocation-specifier> :: STATIC

Semantics:

Allocation of storage for a data object can be STATIC or automatic.
STATIC allocation means that the data object is to exist throughout the

35

89

" , t , -:L , * -- ___,,__-___lm_ 1

MIL-STD-1589B (USAF)

06 June 1980

entire execution of the program. Automatic allocation is applicable

only to data declared within subroutines and means that the data object

need only exist while the subroutine is executing (i.e., values are not

necessarily preserved between calls). Automatic is the default

allocation for data declared in subroutines and cannot be explicitly

specified. STATIC is the default for data not declared in subroutines

and can be explicitly specified both inside and outside of subroutines.

The treatment of STATIC data in a concurrent processing environment

is implementation-dependent with respect to which data, if any, are

shared among processes.

2.1.6 INITIALIZATION OF DATA OBJECTS

Syntax:

<item-preset> = (Item-preset-value>

(item-preset-value> (compile-time-formula> (5.0)

S<loc-function> (6.3.1)

<table-preset> - <table-preset-list>

<table-preset-list> : <default-preset-sublist>

I [<default-preset-sublist> ,]

<specified-preset-sublist>,...

<default-preset-sublist> ::= <preset-values-option>,...

<specified-preset-
sublist> : <preset-index-specifier>

<preset-values-option>,...

<preset-index-specifier> ::= POS (<constant-index>,...)

<constant-index> <compile-time-integer-formula> (5.1.1)

<compile-time-status-formula> (5.4)

<preset-values-option> ::- [<item-preset-value>]

<repetition-count>
(<preset-values-option>,...)

<repetition-count> ::= <compile-tlme-integer-formula> (5.1.1)

36

90

MIL-STD-1589B (USAF)
06 June 1980

<block-preset> - <block-preset-list>

<block-preset-list> ::= <block-preset-values-option>,...

<block-preset-values- : <preset-values-option>
option>

I [(<table-preset-list>)J

i [(<block-preset-list>)]

Semantics:

Items, tables, and blocks with STATIC allocation can be given
initial values by means of <item-presets>, <table-presets>, and
(block-presets>, respectively. Furthermore, constant items and tables
must be given initial values with <item-presets> and <table-presets>.
Initial values are values of the variables after a module has been
loaded but prior to any dynamic reference to the variables. They do not
imply any provision for later restoring values to the initial state.

An <item-preset> specifies an initial value for an item.

A <table-preset> specifies a list of initial values. If the
<table-preset> occurs on an item within an entry of a table, the
<table-preset> specifies values only for that item. If the table is
dimensioned, the <table-preset> for the item, if present, may specify a
list of values to initialize that item in each entry of the dimensioned
table.

If the <table-preset> occurs on an entry of a table, the
<table-preset> specifies values for all items within that entry. If the
table is dimensioned, the (table-preset> specifies values for all the
items in each entry of the dimensioned table. Assuming the entry has N
items in it, the first N values in the <table-preset> are initial values
for the N items in the first entry of the table (in the order in which
the declarations appear), the second N values in the <table-preset> are
initial values for the N items in the second entry of the table, etc.

Entries within a dimensioned table are normally initialized in
order, the first entry being the one with the lowest value of each
dimension index, and proceeding with the rightmost indices increasing
most rapidly. This is the procedure followed when a (default-preset-
sublist> is specified. If a <specified-preset-sublist> is used,
initialization using the values in the sublist will start with the entry
whose indices are specified in the <preset-index-specifier> and will
proceed with the rightmost indices increasing most rapidly.

A <repetition-count> can be used as a shorthand to specify the
number of consecutive repetitions of the sequence of (preset-values-

37

91

MIL-STD-1589B (USAF)

06 June 1980

options> enclosed in the parentheses following the <repetition-count>.

If a value is omitted in the (table-preset>, the item corresponding
to the omitted value will remain uninitialized and cannot be given an
initial value elsewhere in the preset.

A <block-preset> is used only to initialize a block declared with a
<block-type-name>. The <block-preset-list> specifies initial values for
the items, tables and blocks contained within the block in the order of
their declaration. A parenthesized <table-preset-list> is used to
initialize a contained table and a parenthesized <block-prefiet-list> is
used to initialize a contained block. An omitted entry from the list
indicates that the corresponding item, table, or block will remain
uninitlalized.

Constraints:

The type of each value in an <Item-preset>, <table-preset> or
<block-preset> must match or be implicitly convertible to the type of
the data object being initialized (see Section 7.0).

The <preset-index-specifiers> within a <table-preset> must be
specified such that no bit position is initialized more than once and
the bounds of the table are not exceeded.

The value of the <repetition-count> must not be negative.

An item must not be initialized more than once by initializing
another item that overlaps it.

The type of each <constant-index> in a <preset-ndex-specifier>
must match the type of the bounds of the corresponding dimension in the
<dimension-list> of the declaration of the table.

The number of <constant-indices> in a <preset-index-specifier> must
be the same as the number of <dimensions> in the table's
<dimension-list>.

If the argument of a <oc-function> used as a preset value is a
<named-variable>, it must be a <data-name> for an object whose
allocation permanence is STATIC, either explicitly or by default.

38

92

MIL-STD-1589B (USAF)
06 June 1980

2.2 TYPE DECLARATIONS

Syntax:

<type-declaration> ::- <Item-type-declaration>

[<table-type-declaratlon>

I <block-type-declaration>

<Item-type-declaration> TYPE <item-type-name>
<item-type-description> (2.1.1)

<item-type-name> ::= <name> (8.2.1)

<table-type-declaratlon> :: TYPE <table-type-name>
TABLE <table-type-specifier>

<table-type-specifier> ::= [<dimension-list>] (2.1.2.1)
[<structure-specifier>] (2.1.2.2)
[<1ike-option>]
<entry-specifier> (2.1.2)

I [<dimension-list>] (2.1.2.1)
<table-type-name>

<table-type-name> <name> (8.2.1)

<like-option> :- LIKE <table-type-name>

<block-type-declaratlon> ::= TYPE <block-type-name>
BLOCK <block-body-part> (2.1.4)

<block-type-name> ::= <name> (8.2.1)

Semantics:

A <type-declaration> is used to give a name to a type

specification.

An <item-type-declaration> associates the <item-type-name> with the
<item-type-description>.

A <table-type-declaration> associates the <table-type-name> with
the <table-type-specifier>.

If a <like-option> is specified, the entry being described consists
of the Items in the type named in the <like-option> together with the
items In fbe <entry-specifier>. The physical positioning of items in

39

(43

MIL-STD-1589B (USAF)

06 June 1980

the <like-option> relative to the start of the entry is fixed at the
time the <like-option> type name is declared and is not changed by its
use as a (like-option>. If the type named in the <like-option> contains
a <dimension-specifier>, it applies to the entire <table-type-
specifier>. If the table is an ordinary table, the <packing-specifier>,
if present, only applies to the Items in the <entry-specifier>, not to
the items obtained from the (like-option>. If the table is a specified

table, the <words-.per-entry> in the <entry-specifier>, if present,
specifies the total size of the entry including the items obtained from
the <like-option>. If the <table-type-declaration> contains a
<structure-specifier> of T, <bits-per-entry> specifies the total number
of bits the entry is to occupy including items obtained from the
<like-option>. If <bits-per-entry> Is omitted it will default to the
minimum number of bits needed to store the entry, including items
obtained from the <like-option>.

The physical representation of a table type is fixed by the type
declaration. All objects allocated with such a type name will have the
same representation. In particular, the position of table items in a
<like-option> is not modified by the occurrence of a <packing-specifier>
or <order-directive> in the <entry-specifier>. However, unused space in
the portion described by the <like-option> can be occupied by table
items given in a packed <entry-specifier>.

A <block-type-declaration> associates the (block-type-name> with
the <block-body-part>.

For type matching purposes, a type name is considered to be an
abbreviation for its associated <item-type-desciiption>,
<table-type-specifier>, or (block-body-part>, in any context except
within a <pointer-item-description>.

Constraints:

The <item-type-description>, <table-type-specifier>, or <block-
body-part> in a <type-declaration> must not contain an <item-preset>,
<table-preset>, or <block-preset>.

A <block-body-part> in a <block-type-declaration> cannot contain
<constant-declarat :ons>.

If a <table-type-specifier> contains a <dimension-list>, then it
must not contain a <table-type-name> (either directly or in a (like-
option>) whose <table-type-declaration> contains a <dimension-list>.

Tables may be characterized as parallel, serial, tight, ordinary,
variable-length-entry, and specified. The characterizations of the
table type in a <like-option> must be the same as those of the
<table-type-declaration> in which the (like-option> appears.

40

94

MIL-STD-1589B (USAF)
06 June 1980

<Words-per-entry> of the <table-type-specifier> must not specify a
value that is less than <words-per-entry> of the type name specified in
a <like-optlon>.

The (explicit or default) number of bits per entry in a
<table-type-specifier> having tight structure must not be less than the
number of bits per entry of the type name specified in a <like-option>.

A <table-type-name> must be a <name> declared in a
<table-type-declaration>.

A <block-type-name> must be a <name> declared in a

<block-type-declaratLion>.

Note:

A <table-type-name>, <item-type-name>, or <block-type-name> must
not be a formal parameter name or an actual parameter name,

2.3 STATEMENT NAME DECLARATIONS

Syntax:

<statement-name-declaratlon> LABEL
<statement-name>,... ; (4.0)

Semantics:

A <statement-name-declaratlon> is used to explicitly declare a
<statement-name>. Ordinarily, a <statement-name> is implicitly declared
by its use in a <label>. An explicit <statement-name-declaration>,
however, must be used for statement name <formal-input-parameters>, for
statement names that are the same as <define-names> declared in an
enclosing scope, and for external <statement-name-declarations>.

Constraints:

The <statement-names> in a <statement-name-declaration> must either
be <formal-input-parameters> to the subroutine containing the
<statement-name-declaration> or else must be used in <labels> in the
immediate scope containing the <statement-name-declaration> (i.e., not
including nested scopes).

41

95

MIL-STD-1589B (USAF)
06 June 1980

2.4 DEFINE DECLARATIONS

Syntax:

<define-declaration> ::- DEFINE <define-name>
<definition-part>

<define-name> ::= <name> (8.2.1)

<definition-part> : [<formal-define-parameter-list>]

<define-string>

<formal-deflne-parameter-
-list> ::= (<formal-define-parameter>,...)

<formal- lefine-parameter> <letter> (8.1)

<define-string> " <character>...] " (8.1)

Semantics:

A <define-declaration> is used to associate a name with a (possibly
parameterized) text string, the <define-string>. The <define-string>
will be substituted for the <define-name> when the <define-name> is used
in a <define-call> (see Section 2.4.1).

The <formal-define-parameter-list> is used to declare
<formal-define-parameters>. These parameters receive values from

<actual-define-parameters> in each <define-call> (see Section 2.4.1).
The values are substituted in the <define-string> wherever the
<formal-define-parameters> are referenced. Reference to a
<formal-define-parameter> within the <define-string> is indicated by
preceding the parameter name with an exclamation point. Such parameter
references can occur anywhere within the <define-string> and, by
appropriate juxtaposition, can be used to create new symbols.

Within the <define-string>, the quotation mark (") and exclamation
point (!) can be used as simple characters by doubling them. A
<define-string> is terminated by the first undoubled quotation mark,
regardless of the lexical context in which the undoubled quotation mark
appears.

As with other <names>, a <define-name> is known in the scope
containing its declaration and may be redeclared in an inner scope.

The <define-string> may contain <define-calls>. Such calls will be
expanded for each substitution of the <define-string>, using the
definition active in the scope of the <define-call>.

42

961

- 7

MIL-STD-1589B (USAF)

06 June 1980

Constraints:

A <comment> delimited by quotation marks must not occur in a
<define-declaration> between the <define-name> and the <define-string>.

Circular (define-declarations> as the result of <define-strings>
containing <define-calls> are not allowed.

The same (letter> must not appear more than once in any
<formal-define-parameter-list>.

2.4.1 DEFINE CALLS

5yntax:

<define-call> . :- (define-name> (2.4)

[<actual-define-parameter-list>]

<actual-define-parameter- : <actual-define-parameter>,...)
list>

<actual-define-parameter> [<character>...] (8.1)

I " [<character>...] (8.1)

Semantics:

A <define-call> is used to cause textual substitution to occur. A
(deflne-call> is processed as follows:

1. The characters comprising <actual-define-parameters> are
substituted for the corresponding <formal-define-parameters>
in the (define-string> associated with the <define-name>.

2. The resulting <define-string> logically replaces the
(define-call>.

3. The substituted <define-string> is scanned from its beginning
to determine what <symbols> it contains; these (symbols> are
processed as though they had appeared in the orginal text at
the point of the replaced (define-call>.

Note that the substituted source text may be found to contain
(define-calls> and these are processed in the same manner.

If an <actual-define-parameter> is omitted, a null string will be
substituted for the <formal-define-parameter>. If the number of
<formal-define-parameters> exceeds the number of
<actual-define-parameters>, null strings will be substituted for the

43

971-

MIL-STD-1589B (USAF)
06 June 1980

trailing <formal-define-paramuters>.

If an <actual-define-parameter> consists of characters enclosed in
quotation marks, all the enclosed characters are substituted. The
quotation mark (") must be doubled within an actual parameter enclosed
in quotes.

If an <actual-define-parameter> does not contain enclosing
quotation marks, the characters substituted are the first non-blank
character and subsequent characters ending at, but not including, either
(1) the first right parenthesis that is not balanced by a left
parenthesis that is part of the <actual-define-parameter>, or (2) the
first comma that is not between such balanced parentheses.

<Define-calls> are not recognizcd in <comments> and <character-
literals>.

Constraints:

The <actual-define-parameter-list> must not be omitted if the
corresponding <define-declaration> contains a <formal-define-parameter-
list>.

The number of <actual-define-parameters> must not be greater than
the corresponding number of <formal-define-parameters>.

A <define-call> cannot be juxtaposed with surrounding symbols so as
to create new symbols after substitution.

A <define-call> must not be used as the <name> being declared
within a declaration.

A <define-call> must not be used as a <fonnal-input-parameter> or
<formal-output-parameter> within a <piocedure-heading> or <function-
heading>.

The same <letter> must not appear more than once in any
<formal-define-parameter-list>.

Note:

The define-listing directives (see Section 9.7.2) allow programmer
control over whether the source program listing contains the expanded
string, the define invocation, or both, for <define-calls>.

Examples:

DEFINE FOO(A) "BAZ !AFAZ IA";
DEFINE BAR "HELLO";

44

98

Kl

MIL-STD-1589B (USAF)
06 June 1980

DEFINE BARFAZ "GOODBYE";
DEFINE HELLOFAZ "NOT USED";
FOO(BAR)

The result of the <define-call>, FOO(BAR), after substItuting for the
formal parameter IA is BAZ BARFAZ BAR, and after rescanning this string,
the final result is BAZ GOODBYE HIELLO.

DEFINE MAXEDEF(N, S) "DEFINE IN .."I1S"""1;
MAYEDEF(NEW, HELLO);

The result is DEFINE NEW "HELLO"; , i.e., a new (define-declaration>.

2.5 EXTERNAL DECLARATIONS

Syntax:

<external-declaration> :-<def-specification> (2.5.1)

(Smni-s ref-specfication>
(2.5.2)

<External-declarat Ions> declare <names> that are potentially known
in other <imodules> of the <complete-program>. Suich rames are said to be
external.

Con st ra I nt:

Formal pa -ameter names cannot be declared external.

2.5.1 DEF SPECIFICATIONS

Syntax:

(def-specification> : =<simple-def>

(comnpound-def>

(slmple-def> : =DEF

<def-specification-choice>

<compound-def> : =DEF BEGIN
<def-specificat ion-choice> ...
END

45

9q

MIL-STD-1589B (USAF)

06 June 1980

<def-specification-choice> ::- <null-declaration> (2.7)

<data-declaration> (2.1)

<def-block-instantiation>

<statement-name-declaration> (2.3)

(directive> (9.0)
<def-specification-choice>

<def-block-instantiation> ::= BLOCK INSTANCE
<block-name> ; (2.1.4)

Semantics:

<Def-specifications> enable data objects to be declared that are
potentially available via <ref-specifications> and/or <compool-
directives> for use in other <modules>. Physical storage will be
allocated for these objects.

Either a <def-block-instantiation> or a (block-declaration> may be

used in a <def-specification> to create a block with external scope.
However, in order for a <def-block-instantiation> to be meaningful, a
<ref-specification> containing a <block-declaration> having the same
<block-name> must exist, either in that (module> or in a
<compool-module> that is referenced via a <compool-directive>. Preset
information used in the creation of a block declared with a
<def-block-instantiation> will be obtained from the corresponding
<ref-specification>.

A (statement-name-declaration> in a <def-specification> makes the
addresses of the designated statements available as linkage information
in the environment of the <complete-program> but does not make these
names available as targets of out-of-scope GOTO statements (see Section
4.7).

Constraints:

A data declaration in a <def-specification> and a corresponding
declaration in a <ref-specification> must agree in name, type, and all
attributes. However, a compiler will perform this check across <module>
boundaries only if a connection is established between the <modules> via
a <compool-directive>.

External data must have STATIC allocation, either explicitly or
implicitly.

46

100 fL 3

MIL-STD-1589B (USAF)
06 June 1980

The <data-declaration> in a <def-specification> cannot be a
<constant-declaration>. (This constraint does not prevent <constant-
declarations> from appearing in <block-declarations> in <def-
specifications>.)

2.5.2 REF SPECIFICATIONS

Syn tax:

<ref-specification> : <simple-ref>

I <compound-ref>

<simple-ref> = REF

<ref-specification-choice>

<compound-ref> ::= REF BEGIN
<ref-speciflcation-choice>...
END

<ref-specification-choice> := <null-declaration> (2.7)

< (data-declaration> (2.1)

I <subroutine-declaration> (3.0)

I <directive> (9.0)
<ref-speciflcation-choice>

< (statement-name-declaration> (2.3)

Semantics:

A <ref-specification> enables a <module> to reference a <name>
whose <def-specification> is in another <module>.

Physical storage for external names occurs in the <module>
containing the <def-specification> and not in the <module> containing
the <ref-specification>.

A <ref-specification> for a <name> may appear in a <compool-module>
and the corresponding DEF in another <module>. In that case, the <name>
will be available for use in any other module of the <complete-program>,
provided that the referencing module has the appropriate
<compool-directive>. The compiler will enforce the requirement that the
DEF and the REF specifications agree, provided the <module> containing
the DEF has the appropriate <compool-directive>. Alternatively, the
<ref-specification> may appear in the accessing <module> directly

47

101

HIL-STD-1589B (USAF)
06 June 1980

instead of in a compool (bypassing Lhe compool entirely), but in this
case it will be beyond the compiler's ability to check for compatibility
between the DEF and the REF specifications. When <ref-specifications>
are used outside of compools to gain access to external names, the
programmer is entirely responsible for the correct usage of those names.

For <data-declarations> in a <def-specification> that is in a
<compool-module>, no <ref-specification> is necessary if the accessing
module has a <compool-directive> that causes that data to be imported
(see Section 9.1).

Constraints:

For every <data-declaration> in a <ref-specification>, there must
exist a corresponding declaration in a <def-speciflcation>. For every
<subroutine-declaration> in a <ref-specification>, there must exist in
some <procedure-module> or <main-program-module> a corresponding
<procedure-definition> preceded by DEF.

In a <ref-specification>, presets are illegal in
<item-declarations> and <table-declarations> and are optional in
<block-declarations>. A <ref-specification> that contains presets can
be used only in conjunction with a <def-block-instantiation>.

A <data-declaration> in a <ref-specification> cannot be a
<constant-declaration>. (This constraint does not prevent
<constant-declarations> from appearing in <block-declarations> in
<ref-specifications>).

2.6 OVERLAY DECLARATIONS

Syntax:

<overlay-declaration> ::= OVERLAY
[<absolute-address>]
<overlay-expression>

<absolute-address> :: POS (<overlay-address>)

<overlay-address> :: <compil,-time-integer-formula> (5.1.1)

<overlay-expression> ::= <overlay-string>:...

<overlay-string> ::- <overlay-element>,...

<overlay-element> :: <spacer>

48

102

MIL-STD-1589B (USAF)
06 June 1980

I <data-name>

I (<overlay-expression>)

<spacer> : W <compile-time-integer-formula> (5.1.1)

<data-name> : <item-name> (2.1.1)

I <table-name> (2.1.2)

I <block-name> (2.1.4)

Semantics:

An <overlay-declaration> is used to specify any or all of the
following:

1) that data objects are to have a specific allocation order

2) that certain data objects are to occupy the same memory
locations as other data objects

3) that certain data objects are to be allocated at a particular
absolute memory location

The <overlay-elements> in an <overlay-string> are allocated memory
locations in the order of their appearance in the string. The memory
locations allocated to the elements of an <overlay-string> that appears
to the left of a colon in an <overlay-expression> are overlayed with the
space allocated to the elements of the <overlay-string> tLat appears to
the right of the colon.

The <overlay-address> specifies an absolute mempry location at
which allocation of the <overlay-expression> begins. The meaning of an
overlay address is machine dependent.

A <spacer> in an <overlay-string> specifies a number of words to be
skipped during allocation.

Constraints:

The allocation permanence of all data objects in an
<overlay-declaration> must be the same (i.e., all STATIC or all
automatic).

An <overlay-declaration> within a <block-declaration> or
<block-type-declaration> must not reference data names declared outside
the block or block type or within nested blocks.

49

103

MIL-STD-1589B (USAF)
06 June 1980

An <overlay-declaration> outside a (block-declaration> or
<block-type-declaration> must not reference data names declared within a
block or block type.

An <overlay-declaration> within a <block-declaration> or
<block-type-declaration> must not include an <absolute-address>.

A <block-declaration> or <block-type-declaration> must not include
an <overlay-declaration> if an <order-directive> is in effect for the
block or block type.

Declarations for all <data-names> in an <overlay-declaration> must
precede the <overlay-declaration>, and all must be in the same scope.

<Overlay-declarations> cannot be used to specify more than one
physical location to any data object.

Names of formal parameters cannot be used in
<overlay-declarations>.

If an <overlay-address> is specified, all <data-names> used in the
<overlay-expression> must have an (explicit or default) allocation
permanence of STATIC.

Note:

A <data-name> in an <overlay-declaration> cannot be declared in a
<Lonstant-declaration>.

2.7 NULL DECLARATIONS

Syntax:

<null-declaration>

I BEGIN END

Semantics:

A <null-declaration> has no semantic effect.

50

104

MIL-STD-1589B (USAF)
06 June 1980

3.0 PROCEDURES AND FUNCTIONS

Syntax:

<subroutine-declaration> <procedure-declaration> (3.1)

I <function-declaration> (3.2)

<subroutine-definition> :: <proc,-dure-defInion> (3.1)

<function-definition> (3.2)

I <directive> (9.0)
<subroutine-definition>

Semantics:

Subroutines describe algorithms that may be executed from more than
one place in a <complete-program>. A subroutine is either a procedure,
which is invoked by a <procedure-call-statement>, or a function, which
is invoked by a <function-call>.

A <subroutine-definition> contains Lhe executable code for the
subroutine, in addition to declarations for all local data and formal
parameters, as well as definitions of any nested subroutines. A
<subroutine-definition> is said to define the subroutine.

A <subroutine-declaration>, on the oTher hand, Is said to declare
the subroutine. A <subroutine-declaration> contains the heading of the
subroutine and <declarations> for the formal parameters, but it contains
no executable code. A <subroutine-declaration> is required in a
<ref-specification> for each subroutine that is invoked in a module
other than the module containing its definition (see Spction 2.5). A
<subroutine-declaration> is also required in two other situations: (1)
when a subroutine name is declared as a formal parameter (see Section
3.3), and (2) when the name of the subroutine is the same as a
<define-name> in an enclosing scope. It is not necessary to provide a
<subroutine-declaration> if the subroutine is invoked only In the
<module> where it is defined and if its name is not passed as a
parameter or used in an enclosing scope as a <define-name>.

Constraints:

The <procedure-heading> or <function-heading> of a <subroutltte-
declaration> and that of the corresponding <subroutine-definition> must
have identical attributes, and the parameters (both input and output)
must agree in number, type, and order. (This constraint will be
enforced only when the declaration is known in the scope of the
definition.) Also, the subroutine name in the declaration and

51

105

MIL-STD-1589B (USAF)
06 June 1980

definition must be the same (unless the <subroutine-declaration> is for
a formal parameter).

3.1 PROCEDURES

Syntax:

<procedure-declaration> (procedure-heading>
(declaration> (2.0)

<procedure-definition> :: <procedure-heading>
[(directive>...] (9.0)
<procedure-body>

(procedure-heading> ::- PROC

<procedure-name>
[<subroutine-attribute>]

[Wformal-parameter-list>] (3.3)

(subroutine-attribute> REC

I RENT

<procedure-name> <name> (8.2.1:

<procedure-body> <subroutine-body>

(subroutine-body> <statement> (4.0)

BEGIN [(declaration>...] (2.0)
(statement>... (4.0)
[(subroutine-definition>...] (3.0)
[(directive>...] (9.0)
[(label>...] END (4.0)

Semantics:

The <procedure-headlng> in a <procedure-declaration> may contain a
<formal-parameter-list>, which specifies the names that are used In the
<procedure-body> to refer to the corresponding arguments supplied by
each call of the procedure. The syntax, semantics, and constraints for
a procedure's <formal-parameter-list> are the same as for a function's
<formal-parameter-list>, and are presented in Section 3.3.

The differences between a <procedure-declaration) and a
<procedure-definition> are described in Section 3.0.

A <subroutine-attribute> of REC indicates that the subroutine is
potentially recursive, i.e., that at run time, an invocation of the

52

106

MIL-STD-1589B (USAF)

06 June 1980

subroutine may be dynamically nested within another invocation of it.

If REC is present, physical allocation of locally-declared automatic
data will occur dyn3mically. The data will be allocated and deallocated
when the subroutine is entered and exited, respectively. This assures

that separate copies of the local data will exist for each successive
call in the recursive chain. Locally-declared STATIC data, however,
will be allocated once, and the same storage will be used for all calls

of that subroutine throughout the <complete-program>.

A <subroutine-attribute> of RENT indicates that the subroutine is
re-entrant and may therefore be executed concurrently in a concurrent
processing environment. A recursive subroutine is also re-entrant.

If execution of the <procedure-body> is completed without executing
a RETURN statement, an ABORT statement, or a GOTO statement whose target
is the name of a formal parameter, an implicit RETURN statement is

executed.

Constraints:

A <procedure-declaration> can contain no <declarations> other than
those for the procedure's formal parameters. <Declarations> of local
data appear only in the procedure's definition.

A procedure must not be invoked recursively if it is not declared
REC.

A procedure must not be invoked re-entrantly if it is not declared

RENT or REC.

A <subroutine-body> must contain at least one non-null <statement>
(e.g., RETURN).

3.2 FUNCTIONS

Syntax:

<function-declaration> ::= <function-heading>
<declaration> (2.0)

<function-definition> :: <function-heading>
[<directive>... 1 (9.0)

<function-body>

<function-heading> :: PROC <function-name>
[<subroutine-attribute>] (3.1)
[<formal-parameter-list>] (3.3)
<item-type-description> (2.1.1)

53

107

11L-STD-1589B (USAF)

06 June 1980

<function-name> :: <name> (8.2.1)

<function-body> ::= <subroutine-body> (3.1)

Semantics:

The differences between a <function-declaration> and a
<function-definition> are described In Section 3.0.

The <item-type-description> specifies the type of the return value
of the function. Within the body of the function, the name of the
function may be assigned to as a variable in an <assignment-statement>.
When the function is exited, the most recent value assigned to the
<function-name> is used as the value of the function. The return value
Is considered to be allocated as automatic storage (see Section 2.1.5).

Use of the <function-name> in a <formula> within the body of the
function is a recursive invocation of the function. Within the body of
the function, the <function-name> may also be used as an
<actual-input-parameter> in a subroutine call when the correspoi.ding
<formal-input-parameter> is a <function-name> (see Section 3.3).

The <function-heading> in a <function-declaration> or <function-
definition> may contain a <formal-parameter-list>, which specifies the
names that are used In the <function-body> to refer to the corresponding
arguments supplied by each call of the function. The syntax, semantics,
and constraints for a function's <formal-parameter-list> are the same as
for a procedure's <formal-parameter-list>, and are presented in Section
3.3.

The inclusion of an <item-type-description> in the heading of a
subroutine indicates that the subroutine is a function.

The <subroutine-attributes> of REC and RENT apply to functions in
the same way as for procedures (see Section 3.1).

If execution of the <function-body> is completed without executing
a RETUPR statement, an ABORT statement, or a GOTO statement whose target
is the name of a formal parameter, an implicit RETURN statement is
executed.

Constraints:

The <function-name> may not be used as an

<actual-output-parameter>.

The <function-name> is not declarable as a <name> within the
function body.

54

108

I

MIL-STD-1589B (USAF)

06 June 1980

A <function-declaratIon> can contain no <declarations> other than
those for the functions formal parameters. <Declarations> of local data
appear only in the function's definition.

A function must not be invoked ursively if it is not declared
REC.

A function must not be invoked re-entrantly if it is not declared
RENT or REC.

The <function-name> must be assigned a value before the function is
exited.

3.3 PARAMETERS OF PROCEDURES AND FUNCTIONS

Syntax:

<formal-parameter-list> ::= ([<formal-input-parameter>,...]

: <formal-output-parameter>,...])

<formal-input-parameter> ::= [<parameter-binding>]

<input-parameter-name>

<formal-output-parameter>::= [<parameter-binding>]
<output-parameter-name>

<parameter-binding> :: BYVAL

I BYREF

I BYRES

<input-parameter-name> ::= <data-name> (2.6)

I <statement-name> (4.0)

<subroutine-name>

<output-parameter-name> :: <data-name> (2.6)

<subroutine-name> <procedure-name>

I <function-name> (3.2)

Semantics:

Parameters permit subroutines to have locally-declared <names> that
correspond to entities whose values can be different for different

55

109 !,

MIL-STD-1589B (USAF)
06 June 1980

calls.

<Formal-i nput-paramet ers> and <formal-output-parameters> constitute

the formal pirameters of the subroutine. When the subroutine is

invoked, the formal parameters are associated with a corresponding list

of actual parameters supplied in the subroutine call (see Section 4.5).

<Formal-input-parameters> transfer values into the

<subroutine-body> from the corresponding <actual-input-parameters>.
<Formal-output-parameters> transfer values into the <subroutine-body>
and also transfer values from the <subroutine-body> back to the
corresponding <actual-output-parameters>.

If a formal parameter Is a <data-name> it may be bound to the
corresponding actual parameter in any of the following ways: by
reference, by value, by result, or by value-result. Reference binding
means that the actual parameter and the formal parameter denote the same
physical object. Any change in the value of the formal parameter
entails an immediate change in the value of the actual parameter and
vice-versa. Value-result binding means that the formal parameter
denotes a separate data object, assigned the value of the actual
parameter on entry to the subroutine, and used to assign its value to
the actual parameter on normal exit from the subroutine. Since it is a
separate data object there is no interaction between it and the actual
parameter during execution of the subroutine. Value binding is similar
except the actual parameter is not modified on exit from the subroutine.

Result binding leaves the value of the formal parameter undefined on
entry to the subroutine but is otherwise like value-result binding.

Standard rules for types of binding indicate the effect normally
required:

Reference binding shall be used for blocks, tables, and for
entries of all except tight tables.

Value binding shall be used for input items and tight table
entries.

Value-result binding shall be used for output items and tight table
entries.

Explicit <parameter-binding> specification affectq these rules as

follows:

BYREF - reference binding is required. If the actual parameter
cannot be passed by reference (such as a badly aligned
table item), the compiler shall allocate a temporary

56

110

MIL-STD-1589B (USAF)
06 June 1980

variable, use value or value-result binding as
appropriate to pass the parameter between its actual
location and the temporary variable, and pass the
temporary variable by reference to the subroutine.

BYVAL - reference is prohibited. The parameter shall be passed
by value or value-result as appropriate.

BYRES - result binding is required.

An implementation may optimize binding methods provided it
guarantees required results both in parameters passed and in side

effects, if any.

If the <formal-input-parameter> is a <statement-name>, a GOTO
statement with that name as a target will cause the subroutine to be
exited without setting any of the value-result parameters. Execution
will resume at the statement named in the actual parameter as though the
GOTO statement had been executed at the point of the subroutine call.

If the <formal-input-parameter> is a <subroutine-name> the <name>
of the corresponding actual parameter determines which <subroutine-
definition> to associate with the formal parameter's
<subroutine-declaration> on each call. A call to that subroutine via
the formal parameter <name> will be treated as if the corresponding
actual parameter subroutine had been called from the same environment in
which <subroutine-name> was originally specified as an
<actual-input-parameter>.

The order of evaluation of actual parameters is unspecified.

In the absence of an <interference-directive>, no interference is
assumed within the subroutine between actual parameter data and formal
table or block parameters, or between actual parameters and variables
accessed directly from within the subroutine.

Constraints:

The same name must not appear more than once in any
<formal-parameter-list>.

A <formal-input-parameter> cannot be used in a context in which its
value can be altered (e.g., as a target in an <assignment-statement>).

Names of data declared as formal parameters must not be used in
<overlay-declarations>.

Declarations of formal parameters must not contain <allocation-
specifiers> or presets.

57
Ill

MIL-STD-1589B (USAF)

06 June 1980

<External-declaratIons> of formal parameters are not permitted.

The <subroutine-definition> (and <subroutine-declaration>, if one
is present) must contain an explicit <declaration> for each <name> in
the <formal-parameter-list>.

For any subroutine call, the number of formal and actual input
parameters must be the same, and the number of formal and actual output
parameters must be the same.

Declarations of formal parameters cannot be <constant-declarations>
or <type-declarations>.

For all table parameters, the types of the formal parameters and
those of the corresponding actual parameters must be equivalent (see
Section 7.0). This requirement extends to the types and associated
attributes of all components, and their allocation order. For all item
parameters, the rules for implicit attribute conversion apply (see
Section 7.0). Block parameters match under the following conditions:
(1) the type and textual order of the components match exactly; (2) an
!ORDER directive is either present in both <block-body-parts> or absent
in both <block-body-parts>; and (3) <overlay-declarations> in both
blocks have the same effect.

The actual parameter corresponding to a formal Input parameter
<statement-name> must be a <statement-name>. The actual parameter
corresponding to a formal input parameter <subroutine-name> must be the
name of a subroutine. Parameter types and return value types of formal
and actual subroutines must match exactly.

BYRES binding must not be specified for input parameters.

3.4 INLINE PROCEDURES AND FUNCTIONS

Syntax:

<inline-declaration> INLINE
<subroutine-name>,... ; (3.1)

Semantics:

An <inline-declaration> causes the object code for the bodies of
each of the designated subroutines to be inserted at the point of every
call of that subroutine within the scope containing the
(inline-declaration>. This will be done instead of inserting code for
calling a remote subroutine body.

58

112

t.

MIL-STD-1589B (USAF)
06 June 1980

The effect of the <inline-declaration> extends for just the name
scope in which the <inline-declaration> appears. It does not affect
calls appearing in enclosing scopes.

If any actual parameters to inline subroutines are constants,
InlIne expansion may cause some formulas In the <subroutine-bodles> to
become evaluable at compile time. Compile-time evaluation of these
formulas will be performed and any corresponding error messages will be
generated as though the programmer had written those formulas directly.
Except for the effects of compile-time evaluation, the semantics of
inline subroutine expansion are identical to the semantics of the
normal, remote subroutine call mechanism.

Inline subroutines may themselves contain (possibly inline)
subroutine calls, but they may not contain nested subroutine
definitions.

Inline subroutine names may be used as actual parameters, but a
call to the matching fcrmal parameter name will result in a closed
rather than inline invocation (even if the actual parameter is an inline
subroutine).

Constraints:

Names of subroutines whose definitions appear in another module
cannot be used in <inline-declarations>.

Formal parameters cannot be declared to be inline.

It is illegal to have an inline subroutine invocation of a
subroutine that is already being expanded inline.

Formal parameters of inline subroutines cannot be used in contexts
where the syntax requires a compile-time formula.

3.5 MACHINE-SPECIFIC PROCEDURES AND FUNCTIONS

Semantics:

Each compiler implementation may provide a set of procedures and

functions that are intrinsically recognized by the compiler. These
procedures and functions shall typically encompass operations that are
not directly provided by the language. They may be implemented as
subroutines or via inline code, whichever is suitable. The use of

inline code is particularly suitable as a vehicle for invoking single

machine instructions which are peculiar to the target machine.

59

11.3

- -- I

MIL-STD-1589B (USAF)
06 June 1980

In general, a subroutine will be provided for machine instructions
whose execution would otherwise be unobtainable through the language.

It is not intended that every target machine instruction be supported as

a machine-specific procedure or function. Subroutines will, however, be

provided for machine-specific instructions whose meaning is not

expressible in the language (e.g., "load status word", "test condition
code"), as well as instructions for which a J73 subroutine could be

written but which are directly implemented by target-machine
instructions (e.g., "sine", "matrix multiply", or "rotate length-32
bitstring", etc.). Such subroutines will be defined at system scope and
hence their names will be redefinable in inner scopes. Such subroutines
will be invoked in the same way as other subroutines (see Sections 4.5
and 6.3). The particular parameters to such subroutines are

subroutine-dependent.

Implementation requirements for each such subroutine Include

specification of the operation to be performed and of the rules for each

formal parameter, including both its JOVIAL attributes and how it is

used. The compiler shall generate code to use the parameters and

perform the specified operation.

t0

114

MIL-STD-1589H (USAF)
06 June 1980

4.0 STATEMENTS

Syntax:

<statement> = [<directive>...] [<label>...] (9.0)

<simple-statement>

I [<directive>...] [<label>...] (9.0)
<compound-statement>

<simple-statement> ::- <assignment-statement> (4.1)

I <loop-statement> (4.2)

(if-statement> (4.3)

<case-statement> (4.4)

<procedure-call-statement> (4.5)

<return-statement> (4.6)

<goto-statement> (4.7)

<exit-statement> (4.8)

<stop-statement> (4.9)

(abort-statement> (4.10)

<null-statement>

<null-statement>

I BEGIN [<label>...]
END

<label> : <statement-name>

<statement-name> ::= <name> (8.2.1)

<compound-statement> BEGIN <statement>...

[<directive>...] (9.0)
[(label>...] END

61

115

MIL-STD-1589B (USAF)
06 June 1980

Semantics:

<Statements> are the means by which computational algorithms are

specified. They control the execution of the <complete-program>.

A <compound-statement> permits a sequence of <statements> to be
used in contexts requiring a single <statement>.

A <null-statement> results in no operation.

A <label> is used to attach a <statement-name> to a <statement>. A
<label> that is attached to the END of a <compound-statement> or
<null-statement> is treated as if a no operation <statement> followed
the <label>.

4.1 ASSIGNMENT STATEMENTS

Svntax:

<assignment-statement> ::= <variable-list> =

<formula> ; (5.0)

<variable-list> ::= <variable>,... (6.1)

Semantics:

An <assignment-statement> causes the value of the <formula> to the
right of the equal sign to be assigned to the <variables> to the left of
the equal sign.

In performing the assignment, the <formula> is evaluated first.
-Then, the leftmost variable is evaluated and the value of the formula is

assigned to that variable. Next, the second-to-the-left variable is
evaluated and the value of the formula is assigned to it. This sequence
of evaluations continues until the list of variables is exhausted. If
necessary and permitted (see Section 7.0), the value of the formula is
implicitly converted to the type of the variable being assigned to. For
numeric values, the value is rounded or truncated according to the
<round-or-tiuncate> attribute of each variable being assigned to (see
Sections 2.1.1.2 and 2.1.1.3).

Constraints:

The type of the <formula> must match or be implicitly convertible
to that of each of the <variables> according to the rules given in
Section 7.0.

62

116

* .A ~

MIL-STD-1589B (USAF)

06 June 1980

All <variables> in the <variable-list> must be of the same type

class.

None of the <variables> may be <formal-input-parameters>.

Note:

Assignment semantics and constraints apply to presets (Section
2.1.6), assignments to <control-items> in (loop-statements> (Section
4.2), and some types of actual/formal parameter correspondence (Section

3.3).

Since the implemented precision of packed fixed point table items
may be less than the implemented precision of an unpacked item having
the same fixed type, and since rounding and truncation are performed
with respect to Implemented precision, assignment to packed table items
may change the value being assigned (see Section 7.0).

4.2 LOOP STATEMENTS

Syntax:

<loop-statement> ::= <loop-type>
<controlled-statement>

(loop-type> ::= <while-clause>

I <for-clause>

<controlled-statement> ::= <statement>

<while-clause> ::= WHILE <boolean-formula> ; (5.2.2)

<for-clause> FOR <control-item>
<control-clause>

<control-item> :: < (control-variable>

i <control-letter>

<control-variable> ::= <Item-name> (2.1.1)

<control-letter> ::= <lette-> (8.1)

<control-clause> :: < (initial-value>
[<continua ion>]

63

117

MIL-STD-1589B (USAF)
06 June 1980

<Initial-value> ::= <formula> (5.0)

<continuation> <by-or-then phrase>
[<while-phrase>]

I <while-phrase>

[<by--or-then-phrase>]

<by-or-then-phrase> := <by-phrase>

I <then-phrase>

<by-phrase> : BY <by-formula>

<by-formula> := <numeric-formula> (5.1)

<then-phrase> := THEN <formula> (5.0)

<while-phrase> WHILE <boolean-formula> (5.2.2)

Semantics:

A <loop-statement> provides for the Iterative execution of a
statement.

If the <while-clause> form of the <loop-statement> is used, the
<controlled-statement> is executed until the value of the
<boolean-formula> becomes FALSE. The <boolean-formula> is evaluated
before each iteration.

If the <for-clause> form is used, the value of <control-item>
determines the number of iterations. If the <control-item> is an
<item-name>, its type is as specified in its <declaration>, and that
<item-name> may be used for purposes other than loop control before and
after the loop. After execution of the loop concludes, the value of the
<item-name> is the last value it received in the <loop-statement>. If
the <control-item> is a <letter>, the <for-clause> constitutes an
implicit declaration of the <control-item>, and its value is
inaccessible prior to the start of the <loop-statement> and after the
<loop-statement> concludes. Its type is that of the <Initial-value>.
Its scope is the <loop-statement> itself; hence, another loop statement
may use the same <letter> as a <control-Item> (except as prohibited in
Constraints) and no conflict will result.

The actions of the <loop-statement> with a <for-clause> are as
specified by the following algorithm:

Step 1: The <initial-value> is evaluated and assigned to the
<control-Item>.

64

118

MIL-STD-1589B (USAF)

06 June 1980

Step 2: The <boolean-formula> in the <while-phrase> (if
pre.;ent) is evaluated. If it Is FALSE, execution of
the (oop-statement> concludes.

Step 3: The <controlled-statement> is executed.

Step 4: The formula in the <by-or-then-phrase> (if present)
is evaluated. The value for the <by-formula> (if
present) is added to the <control-item>. The value
of the <then-formula> (if present) is assigned to
the <control-item>. Execution continues at Step 2.

The <control-item> may be used in a <formula> In the <control-
clause> and in the <controlled-statement>.

Execution of the <loop-statement> concludes if control Is passed to
another statement by means of a GOTO, RETURN, EXIT, STOP, or ABORT
statement.

Constraints:

If the <control-item> is a <letter>, it n ust not be used in the
<controlled-statement> or <control-clause> in any ,ontext in which its
value can be altered (e.g., as an <actual-output-parameter> or as a
target in an <assignment-statement>). If the <control-item> Is an
(item-name>, assignmeuts to It in the <controlled-statement> are not
prohibited, but will result in a warning message.

A <label> in a <controlled-statement> cannot be used as the
<statement-name> in a <goto-statement> or <abort-phrase> that is outside
the <controlled-statement> or as an <actual-input-parameter> in a
subroutine invocation that is outside the <controlled-statement>.

The <initial-value>, <by-formula> and <then-formula> must match or
be implicitly convertible to the type of the <control-item> (see Section
7.0). Further, the sum of the <by-formula> and the <control-item> must
match or be implicitly convertible to the type of the <control-Item>.
The <initial-value> cannot be of type table.

The <by-formula> (if present) must have type and value such that it
may be legally added to the <control-item> according to the rles of
Sections 5.1.1, 5.1.2, and 5.1.3.

If the <control-item> is a <control-letter>, the <initial-value>
must not be a <status-constant> that belongs to more than one type
(unless the <status-constant> is disambiguated by an explicit conversion
-- see Section 7).

The <control-letter> in a <loop-statement> may not be the same as

65

119

MIL-sTrD-1589B (USAF)
06 June 1980

the (control-letter> of any enclosing <loop-statement>.

A (bit-formula> cannot be Implicitly converted to the

<boolean-formnula> in a <while-phrase>.

4.3 IF STATEKIENTS

-Syntax:

<If-statement> IF (boolean-formula> ;(5.2.2)
<condi tional-state;%ent>
E<else-clause>]

<conditional-statement> <statement> (4.0)

(else--clause> [<directive> ...J1 (9.0)
ELSE <statement) (4.0)

An (if-statement> provides for conditional execution of a statement
depending on the value of its <boolean-formula>.

If the valu te of the <boolean-foraula> is TRUE, thle
(conditional-statement> Is executed and th e (statement> In the ELSE
clause (if any) Is not executed.

If the value of the <hoolean-formula> Is FALSE, the <statement> In
h le "I-I se -c Ilause> (if present) Is executed rather than the
'contji t ionaI- s ta t ctnent> . In the event of niested <if-statements>, an

HISE i,socjat es with the Iinermost unmatched IF.

If the ('boolean-formkdi) has a value that Is know~n at compile time,
ondi tonal uompi lat ion (st-e Sect ion 1.2.4) will occur.

,-on st ra n LS_

<L-ibel s) t hron~hOUt I cupe must be onifque, even if port ions of the

text. within Cthe scrope are inselIec ted -Is a result of conditional

iompi In, inn.

(Directives) preceditip VLSE Must be text directives (Sect ion 9.2)
or listing directives (Section 9.7).

A Cl'tt --f 0 'mnIa~ 'jinot he ImplI cit ly converted o the

MIL-STD-1589B (UJSAF)

06 June 1980

<boolean-fornula> in an <If-statement>.

Note:

<Labels> in the <conditional-statement> and In the <else-clause>
are In the same scope as the (if-statement> itself.

4.4 CASE STATEMENTS

Syntax:

<case-statement> : CASE
(ca se-select or-formula>
[<directive> ...] (9.0)
BEGIN <case-body>
(<label>...] END (4.0)

<case-selector-fornula> :: <integer-formula> (5.1.1)

I <bit-formula> (5.2)

1 <character-formula> (5.3)

I<status-formula> (5.4)

<case-body> (case-alternative> ...

(case-alternative> .. I<directive> ... 1(9.0)
<case-i nd ex-g roup>
(statement> (4.0)
(FALLTHRU]

< default-option>

<default-3pfion> [<directive>...) (9.0)
(DEFAULT)
<statement> (4.0)

71 [FALLTH RU]

(case-index-group> :=(<case-index>,...)

(case-index> :- compile-time-integer-formuila> (5.1 .1)

I compile-time-bit-formula> (5.1 .2)

< compile-time-character- (5.1.3)
formula>

4 o7

MIL-STD-1589B (USAF)
06 June 1980

I <compile-t ine-status-formula> (5.4)

0 <lower-bound> (2.1.2.1)
<upper-buund> (2.1 .2.1)

Semantics:

Wlie reas an <1f-s ta tt-;Ont> provides for the opt I ona I exec it I (. of

either of two statements, a <case-statement> pzovldes for a choice o1
execut I ng one or more of a number of stat I'ent s . (Tle pos';Jble cliocIces

are represented by the various <case-alternatives>).

The particular <case-alternative> is selected according to the

value of <case-selector-formula>. Several values of the <case-selectur-

formula> may select the same <case-alternative>.

With the exception of the <default-option>, each <case-alternative>

is headed by a <case-Index-group> that designates the possible values of
the <case-selector-formula> that after being implicitly converted (if

necessary) to the type of the <case-selector-formula>, cause that

particular <case-alternative> to be selected for execution. Each
<case-index> can designate either a single value or, for integer and

status selector types, a closed range of values bounded by <lower-bound>

and <upper-bound>.

If the value of the <case-selector-formula> does not correspond to

a <case-index> value, the <statement> in the <default-option> is

executed.

If FALLTHRU is not present after a selected <statement>, execution

of the <case-statement> concludes after that <statement> is executed.
If FALLTHRU is present after the selected <statement>, the <statement>

in the textually-succeeding <case-alternative> is then executed.

Control continues to "fall through" to s;ubsequent <case-alternatives>,

until a case-alternative with no FALLTHRU Is executed or until the END
of the <case-statement> has been reached.

If the value of the <case-selector-formula> is known at compile

time, conditional compilation (see Section 1.2.4) will occur for all

unselected alternatives that cannot be ;eached via FALLTHRU s,:antics.

Constraints:

No two <case-alternatives> within the same <case-statement> can be

associated with identical <case-index> values.

If a <default-option> is not present, the value of the

<case-selector-formula> must be represented by a (case-index>.

68

122

__________'_"_____•____-t________.__,___=____.__________.__.____,__.,____,_____________________ [

MIL-STD-1589B (USAF)

06 June 1980

The types of each formula in a <case-Index> must match or be

Implicitly convertible to that of the (case--selector-formula> according

to the rules given In Section 7.0.

If the <case-selector-formula> is a <status-formula>, a

<case-index> specifying lower and tipper bounds is legal only If the
status--type has the default representation (se Section 2.1.1.6).

The <upper-bound> in a <case-i odex> must be greater than or equal

to the 'lower-bound>.

<Directives> preceding DEFAULT or <case-index-groups> must be text
directives (Section 9.27) or listing directives (Section 9.7).

Within a <case-statement>, at most one <default-option> may be used
as a <case-alternative>.

Note:

<Labels> in the <default-option> and in the <case-alternatives> are
in the same scope as the <case-statement> itself. Consequently, control
can be transferred into or between case statements.

4.5 PROCEDURE CALL STATEMENTS

Syntax:

<procedure-call-
statement> ::= <user-defined-procedure-call>

Imachine-specific-procedure-call>

<user-defined-procedure-
call> <procedure-name> (3.1)

j<actual-parameter-list>]

[<abort-phrase>] ;

<actual-parameter-list> ((<actual-input-parameter>, ...]

j : <actual-output-parameter>,...])

<actual-input-parameter> <formula> (5.0)

<statement-name> (4.0)

I <function-name> (3.2)

I <procedure-name> (3.1)

69

_____ __ I.
II --II ,,, . . - .. x ,,,.. _ . ., , . _ : . -...-. ,-r --

MIL-STD-1589B (USAF)

06 June 1980

I <block-name> (2.1.4)

I <block-dereference> (6.1)

I <nested-block>

<nested-block> : <block-name> (2.1.4)

[<block-dereference>. (6.1)

<actual-output-
parameter> : <variable> (6.1)

I <block-name> (2.1.4)

I <block-dereference> (6.1)

I (nested-block>

<abort-phrase> ABORT <statement-name> (4.0)

<machlne-speci fic-
procedure-call> : <procedure-name> (3.1)

[<actual-parameter-list>]

Semantics:

A <procedure-call-statement> causes invocation of a procedure and
the association of formal parameters with actual parameters according to
the rules given in Section 3.3.

A <user-defined-procedure-call> causes invocation of a procedure
defined in a <procedure-definition>. The <abort-phrase> is for use in
connection with <abort-statements>. Its semantics are explained in
Section 4.10.

A <machine-specific-procedure-call> causes invocation of a machine-
specific procedure (see Section 3.5).

A <nested-block> is a block contained in another block. If the
<block-name> was declared in a <block-type-declaration>, the <block-
dereference> references the particular block from which the nested block
Is to be obtained.

Constraints:

Actual parameters in the <procedure-call-statement> must match the
formal parameters of the called procedure In number, kind, and parameter
list position, according to the rules given In Section 3.3.

70

MIL-STD-1589B3 (USAF)
06 June 1980

The (statement-name> In an <abort-phrase> or
(actual-input-parameter> mutst be known In t he scope in which the
<procedure-call-statement> appea rs , but It mist not name a statement
that Is In another module or in an erlom;Ing suhroutirle or that was In
unselected text in conditional compilation. It cannot be the name of a

statement that is In a (cntrolIed-statement> unless the
(procedure-call-statement> Itself Is within that same
(cont rolled-statemet>.

4.6 RETURN STATEMENTS

Syntax:

<return-statemenit> RFR I R N

Semant ics:

The effect of a <riturn-statement> Is to trr-nimnate the execution of
a suibrotine, set any 1;Ziam;t ers that have va be-r msul t semantics, and
return cont rol to the point following the tuivo, at ion of the subrout inc.
If the (return-statement> Is in a (functioin-body>, the current value of
the (function-name> becomes the value of the function call.

If thle subroutine containing the < re t urn- st ateme n t> Is nested
within any enclosing sutbrou t In es, only thle i nne rmos t subroutine is
terminated.

Constraint:

The (re turn--s ta tement > can appear only wi thItIn the body of a
simbrotit ine .

4.7 (0T0 STATEMENTS

Synt ax :

<goto-statement> GOTt) <st at eme(nt -name> ; (4.0)

>Mau nt I C S

A (goto-statement>, causes cont rol to be t ransferred to the
statement named by the specified (s tat ement -name>.

'ivmn the (statme-nt-nime> I-i a formal ,tatvment-iiae paiameter, the
ef fect .f .a <got o-"t'itc.lut>, Is eim 1 (t * 'o retr.; mling f rom the current

0e If nVu I I n .. g ,m m val (1 - ,I t In ii mne t e I s mmid t lien
,X tt illg -A e...t mIt !I(. ., im -) I time smmhro,mtItie' s

MOI

MIL-STD-- 89B (USAF)

06 June 1980

invocation.

Constraints:

The <statement-name> must be known in the scope in which the

<goto-statement> appears. Further, the <statement-name> must not be the
<label> of a statement that is in an enclosing subroutine or in another
module. It cannot be the <label> of a statement in a
<controlled-statement> unless the <goto-statement> is Itself within that
same <controlled-statement>.

4.8 EXIT STATEMENTS

Synt-ax:

<exit-statement> := EXIT

Semantics:

An <exit-statement> causes execution of the immediately enclosing
(loop-statement> to terminate. Its effect is the same as a GOTO

statement that transfers control out of the <controlled-state-nt> to
the point following the end of the (loop-statement>.

Constraint:

The <exit-statement> can appear only in a <controlled-statement>.

4.9 STOP STATEMENTS

Syntax:

<stop-statement> ::= STOP [<integer-formula>] ; 5.I.1)

Semantics:

A <ctop-statement> causes execution of the <complete-program> to
terminate. If a <stop-statement> Is executed within a

<subroutine-body>, the value-result <actual-output-parameters> of any
subroutine whose call is still active will not be set.

The value of the optional <integer-formula> in a <stop-statement>
is made available to the environment in which the J73 program is
executing, where its semantics are implementation-dependent. Absence of
an <integer-formula> implies the value is not determined.

72

126

I

MIL-STD-1589B (USAF)

06 June 1980

Constraint:

The range of legal values of the <Integer-fc:-mula> is HINSTOP
through MAXSTOP.

4.10 ABORT STATEMENTS

S~ntax.

<abort-statement> ABORT

Semantics:

When an <alort-statement> is executed, control passes to the

statement named in the <abort-phrase> of the most recently executed,
currently active <procedure-call-statement> that has an <abort-phrase>.
All intervenlug subroutine invocations are terminated, and value-result
parameters of such subroutines are not set. If there is no
currently-active <procedure-call-statement> that has an <abort-phrase>,
the effect of the <abort-statement> is the same aq STOP.

73

127

MIL-SYD-1589B (USAF)

06 June 1980

5.0 FORMULAS

Syntax:

<formula> : etr'e 1-f-rull> (5.1)

(5.2)

' t Us-hi-. e>. (5.4)

/ , ii t er-fornel a, ("-5)

",i.--e fo rnmela> (5 .6l)

(comp .lc-t me-f-rmula> . :- ... '
1

] i i.e [i!:,J (.I)

.... ~ ~ i.] t. : ,' f . : , ; > , 3)

<, , t , mu 1-0

Semrant ics:

<Formulas> repre ern? v..I a'.. I.;,h i,-;, cl - .. ,01,,i!, with it
a type class and ap, ()pr late iti i i ,s.

A <cc,;ipile-t lIme-formula> is a <frni i i .' w e % l I t i Is c ompe p t ad i nd
used at compile time.

All coinp ilIe-t itme Cmput at i on s ae pe ft , , I j .) the ronpe and

precision parameters of tie tat -i,, t , hire-.

The following constructOles yield vflues at ,,,mpil, ine.

1. Data declared in i 'net anotns>,,Ia t ile), ,:,,"-apt for
constant iteis whose type c l . i- ,oi Irr.

2. The functions 1.OUND, FIRST, a nd LAST, regardless of
their arge)et s; the f unct ion OBOUND, provided Its

argument is n(t a table with * dimensions; the functions

NEXT, BIT, BfYIE, P11FT1., StIliR, APS, and SGN, provided

their arguments -ire known at ,pilt. t ime; the funct Ion
NWDSEN , proV i 1i -uvuI t doe5 not cont ain a

74

MIL-STD-1589B (USAF)

06 June 1980

reference to a name whose declaration is not completed

prior to the point at which the function appears; the
functions BITSIZE, BYTESIZE, and WORDSIZE, provided (1)
their arguments are known at compile time, (2) their
arguments do not contain references to names jhose

declarations are not completed prior to the points at
which the functions appear, and (3) their arguments are

not blocks and are not tables with * dimensions.

3. All operator-operand combinations other than
dereferencing, indexing, and assignment, provided the
operands have values that are known at compile time.

4. All type conversions except REP, provided the value of

the <formula> being converted is known at compile time.

5. All machine parameters.

6. All <status-constants>.

7. All (literals>.

The following values are not known at compile time:

1. Constant items whose type class i. [ointeI.

2. Constant tables and their comp('!itts.

S3 All data dcclarod ;'itliout the word (.IS. ,NT.

4. The LOC function, regard!('s of its .i :,i.nt ;

function UPI(IND, if its ,I 1 ; iv t is a t.
5
'.e with *

dimensions; tlie f L c t i clis ,-T , 'IT, BYIE, li l ,
SI lI rR, ABS, nd if t ,ve , r I
whose valtmo'; !it, TO. ;, i ' - e Ti , Ie ii' IT,

NWDSEN, if its , , :: ; t Is , . . , ,.,I s

not completid lri tj t ' ', I It it v t fPr t I. n
appears; the f , !II s I I (T I<S, I'"' ,, :..:; Wo'.SI/F,
if (I) their irir' 111 la e 1.l, -; I Aie i,,t -own at

coimpi le t ire, (2) it, r ., i, 's t
names whose de,-,,r., .n I .1 , I r to r He

points at which 'Te '" 1K *, , (3) tlvir

argumEn(rts are tlb,' !, , r i.* ' .i, i rs.

5. A] oprr.itor-q f14'Id t. , t iat i,'ie r'.e or more

tVA I .I t vi t,, I -t ,w7 i comp

I'

IL-STD-]589B (USAF)
06 June 1980

6. The REP conversion.

7. Any value arrived at via a (statement>.

8. Dereferenced or subscripted values.

Any value known at compile time may also be used as a run-time
value.

5.1 NUMERIC FORMULAS

.yn tax:

<numerlc-formula> <integer-formula> (5.1.1)

I <floating-formula> (5.1.2)

I <fixed-formula> (5.1.3)

<compile-time-numeric-formula>::= <comp le-t Ime-i nt ege r-formul a> (5.1-1)

I <compile-time-floating-formula>(5.1.2)

I <compile-time-fixed-formula> (5.1 .3)

Seoant ics:

A <numeric-formula> represents a numeric value.

A <compile-time-numerlc-formula> represents a numeric value that is

known at compile time (sue Section 5.0).

5.1.1 INTEGER FORMULAS

Syntax:

<Integer-formula> :: (sign>] <integer-term> (8.3.1)

I <integer-formula>
<plus-or-minus> (8.2.3)
<integer-term>

<Integer-term> :: < (integer-factor>

I <integer-term>
<multiply-divide-or-mod> (8.2.3)
<integer-factor>

7 n

MIL-STD-1589B (USAF)
06 June 1980

(integer-factor> ::= (integer-primary>

I <integer-factor> **

(integer-primary>

<integer-primary> <integer-literal> (8.3.1)

I <integer-machine-
parameter> (1.4)

(integer-variable>

<named-integer-conrtant>

(integer-function-call>

((integer-form 'a>)

<integer-conversion> (7.0)
((focmula>) (5.0)

(Integer-variable> (variable> (6.1)

(named-integer-constant> (named-constant> (6.2)

(integer-function-call> ::= (function-call> (6.3)

<compile-time-integer-formula> (integer-formula>

Semantics:

An (integer-formula> represents a value whose type class is
integer, i.e., S or U.

The integer operators are +, -, *, , OD, and **, which denote
addition, subtraction, multiplication, division, modulus, and
exponentiation, respectively.

The type of a formula composed of an integer operator and two
operands is S NN-I, where NN is the actual number of bits that would be

supplied by the implementation for a signed an integer
(item-declaration> whose size attribute is the larger of the size
attributes of the two operands. The type of an (integer-formula>
consisting of a <sign> and an (integer--term> is S NN-1, where NN is the
actual number of bits that would be supplied for a signed integer

(item-declaration> whose size attribute is that of the (integer-term>.

The quotient of two integers is first computed exactly and then

truncated to an integer result. Truncation will be toward zero.

77

131

.,

MIL-STD-1589B (USAF)
06 June 1980

The modulus of two integers, AA MOD BB, is equivalent to AA -

(AA/BB)*BB.

the value produced by Integer exponentiation to a positive power is
the same as that produced by repeated multiplication.

The value produced by integer exponentiation to a negative power Is
I / (base ** abs (power)) and In most cases is zero.

Constraints:

The value of an (integer-formula> with size attribute SS must lie
in the range MININT(SS) through MAXINT(SS).

An <integer-variable>, <named-Integer-constant>, or (integer-
function-call> must be an integer (S or U) type.

A <complle-time-integer-formula> must be i <Integer-formula> whose
value is known at compile-time (see Section 5.0).

The right operand of / and MOD must he non--zero.

Note:

R and T used in an explicit conversion (see Section 7.0) do not
affect the value of integer division.

5.1.2 FLOATING FORMULAS

Syntax:

<floating-formula> : [:= <sign>] <floating-term> (8.3...

I <floating-formula>
<plus-or-mlnus> (8.2.3)
<floating-term>

<floating-term> := <floating-factor>

I <floating-term>
<multiply-cr-divide> (8.2.3)
<floating-factor>

<floating-factor> ::= <floating-primary>

I <floating-factor>
** <floating-primary>

;8

HIL-STD-1589B (USAF)
06 June 1980

1 floating-factor>
** (Integer-primary> (5.1.1)

<floatIrg-prImary> (floating-literal> (8.3.1)

1 <floatlng-machlne-parameter>(1.4)

I <floating-variable>

I <named-floating-constant>

I <floating-functlon-call>

I (floating-formula>)

I <floating-conversion> (7.0)
(<formula>) (5.0)

<floating-variable> : <wiriah~e> (6.1)

<named-floating-constant> '-<nam d-ronstant> (6.2)

<floating-function-call> <function-call> (6.3)

,compile-tlme-floating-formula>:: = <floating-formula>

Semn"tics:

A (floating-fomnula> represents a value whose type class Is float.

The floating operators are +, -, *, /. and **, which denote
addition, subtraction, mrItiplication, division, and exponentiatlon
respectively. In Pxponentiation with a <floating-factor>, a floating
value Is produced in all cases.

The precision attribute of a <floating-formula> is that of the
formula's most precise floating operand. The operand of a
<floating-conversion> is first computed according to the default rules,
and then converted to the specified floating type (see Section 7.0).

For floating exponentiatinns whose right operand is an
<integer-primary>, the result is -(ABS (left operand) * right
operand) if left operand is negative and right operand is odd; (ABS C
left operand) ** right operand) in all other cases.

Constraints:

79

133

&

MIL-STD-1589B (USAF)
06 June 1980

The value of a <floating-formula> with precision PP must lie in the

range FLOATUNDERFLOW (II) through MAXFLOAT (I) or the range MINFLOAT

(II) through -FLOATUNDERFLOW (II) or be zero, where II =

IMPLFLOATPRECISION(PP).

A (floating-variable>, <named-floating-constant>, or <floating-

functlon-call> must be a floating type.

A <compile-time-floating-formula> must be a <floatlng-formula>

whose value is known at compile time (see Section 5.0).

For exponentiations where the right operand is 1

<floating-primary>, the left operand must not be negative.

Exponentiation of an Integer base to a floating power cannot be

performed. Either the base must be converted to floating or the power
must be converted to integer.

The divisor must be non-zero.

Note:

The round or truncate attribute associated with variables or

constant names does not affect the computation of floating formula

results. Floating formulas are evaluated In an implementation-dependent

manner with respect to how exact results are approximated to the

implemented precision.

5.1.3 FIXED FORMULAS

Syntax:

<fixed-formula> [<sign>] <fixed-term> (8.3.1)

(fixed-formula>
<plus-or-minus> (8.2.3)
<fixed-term>

<fixed-term> :: (fixed-factor>

I (fixed-term> *
<fixed-factor>

I <integer-term> * (5.1.1)

(fixed-factor>

I (fixed-term>
(multiply-or-divide> (8.2.3)

80

134

MIL-STD--1589B (USAF)
06 June 1980

(integer-factor> (5.1.1)

<fixed-factor> = <fixed-literal> (8.3.1)

<fixed-machine-parameter> (1.4)

I <fixed-variable>

<named-fixed-constant>

<fixed-function-call>

((fixed-formula>)

<fixed-conversion> (7.0)
((fixed-term> /
<fixed-factor>)

I <flxed-conversion> (7.0)
(<Integer-ter-m>/

<fixed-factor>)

I <fixed-conversion> (7.0)
(<formula>) (5.0)

<fixed-varlable> :- <variable> (6.1)

<named-fixed-constant> ::= <named-constant> (6.2)

<fixed-function-call> :: <function-call> (6.3)

<compile-time-fixed-formula> <fixed-formula>

Semantics:

A <fixed-formula> represents a fixed point value.

The fixed point operators are +, -, *9, and /, which denote
addition, subtraction, multiplication, and division, respectively. The
rules specifying the result type of these operators guarantee that, in
general, exact results are produced. The specific rules are given below
for each operator. In these rulep, Sn, Fn, and Pn refer to the scale,
fraction part, and precision of an operand or result and n is 1, 2, or R
to indicate the first operand, second operand, or result, respectively.

For addition and subtraction, the default type of the result is:

SR = SI = S2
FR - Max (FI,F2)

81

135 £

.. ..

MIL-STD-1589B (USAF)
06 June 1980

PR - Max (PIP2)

For multiplication, there are two cases:

1. When one operand is an integer, the result scale and

precision is that produced by successive addition, i.e.,

SR = Sa

PR = Pa
FR = Fa

where Sa, Fa, and Pa represent the scale, fraction, and
precision values of the fixed point operand.

2. When both operands are fixed point types, the type of the
result is:

SR = S1 + S2
PR P1 + P2

FR = Fl + F2

If PR is larger than MAXFIXEDPRECISION or if SR does not lie in the
range - 127 through + 127, then the product must be explicitly converted
to a valid fixed point scale and precision (see Section 7.0).

For division, there are also two cases:

1. When dividing a fixed point value by an integer, the

scale and precision of the result are the scale and
precision of the numerator. Truncation will be toward

zero.

2. When both operands are fixed point values or when an
integer is divided by a fixed point value, the result is

exact and must be explicitly converted to a programmer

specified scale and prerision (see Section 7.0).

The default result type of a <fixed-formula> containing a <sign> as

a prefix operator is the type of the operand.

The result type of a <fixed-factor> that is a <fixed-variable>,
<named-fixed-constant>, or <fixed-function-call> is the type specified

in their respective variable, constant, or function declarations.

The type of a <fixed-literal> is contextually determined (see

Section 8.3.1).

The result type of a <fixed-formula> enclosed in parentheses Is the

type of the enclosed <fixed-formula>.

82

136

MIL-STD-1589B (USAF)
06 June 1980

The result type of a <fixed-factor> containing a <fixed-conversion>

Is the type specified by the <fixed-conversion>. If the operand of the

<fixed-conversion> is a <fixed-term> or <fixed-formula>, the infix or
unary operator is evaluated exactly, and the mathematically-defined

result Is converted to the specified fixed type.

Constraints:

Except for the operand of a <fixed-conversion>, the value of a

<fixed-formula> whose scale is SS and whose fraction attribute is FF
must lie in the range MINFIXED(SS,PP-SS) through MAXFIXED(SSPP-SS),
where PP = 1MPLFIXEDPRECISION (SS,FF).

A <fixed-variable>, <named-fixed-constant>, and <fixed-function-
call> must have been declared as fixed types.

Operands of fixed point addition or subtraction must have identical
scales.

A <compile-time-fixed-formula> must be a <fixed-formula> whose
value is known at compile time (see Section 5.0).

The divisor must be non-zero.

Note:

11OD and ** a a not defined for fixed point operands.

5.2 BIT FORMULAS

Syntax:

<bit-formula> ::= <,iogical-operand>
[<logical-continuation>]

I NOT <loglcal-operand>

<loglcal-operand> :: <bit-prlmary>

<relational-expression> (5.2.1)

<blt-primary> ::= <bit-literal> (8.3.2)

I <boolean-literal> (8.3.3)

I <bit-variable>

83

137

.4-.- -

MIL-STD-1589B (USAF)

06 June 1980

1 <named-bit-constant>

I <bit-function-call>

I (<bit-formula>)

I <bit-conversion> (7.0)
(<formula>) (5.0)

<logical-continuation> :: <and-continuation>...

I <or-continuation>...

I <xor-continuation>...

I <eqv-continuation>...

<and-continuation> : AND <logical-operand>

<or-continuation> ::= OR (logical operand>

<xor-continuation> XOR (logical-operand>

<eqv-continuation> EQV (logical-operand>

<bit-variable> <variable> (6.1)

<named-bit-constant> <named-constant> (6.2)

<bit-function-call> <function-call> (6.3)

<compile-time-bit-formula> <bit-formula>

Semantics:

A <bit-formula> represents a value whose type class is bit. Its
size is the number of bits comprising its value.

If the <bit-formula> is :omposed of <logical-operands> and one or
more of the logical operators AND, OR, XOR, and EQV, the size of the
result is the size of the longest operand. Shorter operands are padded
on the left with zeros as necessary. Note that the syntax requires
explicit parentheses for all <bit-formulas> containing two or more of
these operators, unless the operators are identical.

NOT produces a value that is the logical complement of its operand.
AND, OR (inclusive or, XOR (exclusive or), and EQV (equivalence)
perform their usual logical function on their two operands on a
bit-by-bit basis. If both operands have a size of one bit and the value

84

138

MIL-STD-1589B (USAF)

06 June 1980

of the left operand is such that the result of the operator can be

determined, evaluation is "short-circuited", i.e., the right opeiand

will not be evaluated and need only satisfy semantic constraints that

can always, even in the most general case, be verified without

evaluating the operand (e.g., the operand need not satisfy the division

by zero constraint if it is not evaluated).

Constraints:

A <bit-variable> must be a <variable> whose type class is bit.

A <named-bit-constant> must be a <named-constant> whose type class
Is bit.

A <bit-function-call> must be a <function-call> whose result value

is bit.

A <compile-time-bit-formula> must be a <bit-formula> whose value is
known at compile time (see Section 5.0).

5.2.1 RELATIONAL EXPRESSIONS

Syntax:

<relational-expression> ::= <integer-formula> (5.1.1)
<relational-operator> (8.2.3)

<integer-formula> (5.1.1)

<floating-formula> (5.1.2)
<relational-operator> (8.2.3)
<floating-formula> (5.1.2)

<fixed-formula> (5.1.3)
<relational-operator> (8.2.3)
<fixed-formula> (5.1.3)

<character-formula> (5.3)

<relational-operator> (8.2.3)

<character-formula> (5.3)

<status-formula> (5.4)

<relational-operator> (8.2.3)

<status-formula> (5.4)

<bit-primary> (5.2)

<equal-or-not-equal-operator> (8.2.3)

<bit-primary> (5.2)

85

139

MIL-STD-1589B (USAF)

06 June 1980

<pointer-formula> (5.5)
<relational-operator> (8.2.3)
<pointer-formula> (5.5)

Semantics:

A <relational-expresslon> represents a value obtained by comparing
two formulas vsing a <relational-operator>. Its type class is B and its

size is one bit.

The relational operators, = (equal), > (not equal), < (less toan),

> (greater than), <= (less than or equal), and >= (greater than or
equal), carry their uF>dal meanings.

Character comparisons will be made on the basis of the collating
sequence of the character set used in a given Implemuntati)n.

Status comparisons will be made on the basis of the representation

cf the status values.

Pointer comparisons will be made on a target-machine-dependent
basis.

For bit and character operands, tie shorter will be implicitly

converted to the type of the longer as described in Section 7.0.

Constraints:

When both operands are <-tatus-constants>, at least one must be

unambiguously associated with a single status type.

When the two operands are <status-formulas>, their types must be

identical.

When the two operands are <pointer-formulas>, their types must be

identical or one must be an untyped pointer.

When both operands are <fixed formulas>, there must exist a type to

which both operands are implicitly convertible.

2 5.2.2 BOOLEAN FORMULAS

F6

1 40

tMjI 1,- S D- I ',81 B I (I SA F)

06 lone 1 980

Syntax:

(boolean-formula> : <bit-formula) (-.2)

S emna nt I c-s:

A (boolean-formula> Is lit-formula> whose sf;-e Is 'mne hit. it
has thle value TRUE if the va- of the !,t Is one ;ind FALSE otlherwiso.

Con st ra in ts:

In contexts syntacti cally requi ring a <bnol ln -fccmul a)
(<If-staterients>, <while-phrases>, a nd Y'r;!ce-,'On tr o I s>) a
<bit-formula> cannot he Imipli cit ly conve-ted to a ()0 a-oia >

5.3 ClAACF FOR.MU1LAS

SyLbt ax:

<charact er-f ormujla> :: (haatr- i t eral (8.3.)

I<cliaract cr-Va ri ihl e>

<c (carac t e r- f ui t i on-c all1>

(<chiarac to r-formul a>)

I<character- conversion> (7.0)
<foiimula>)(5.0)

<character-variable> : ~<\nriable> (6.1)

<named-charactei--constant>O' <named-constant> (6.2)

<character-function-call> :: <function-call> (6.3)

(comp'e(-time-character-fo-mula> :=<character-for-mula>

Semantics:

A <chiaracter-formula> represents a value whose type class is
character. Its size is the number of bytes comprising its value.

,141

MIL-STD-1589B (USAF)
06 June 1980

Constraints:

A <character-varlable> must be a <variable> whose type class is

character.

A (named-character-constant> must be a <named-constant> whose type
class is character.

A <character-function-call> must be a <function-call> whose result
value is character.

A <compile-tlme-character-formula> must be a <character-formula>
whose value is known at compile time (see Section 5.0).

5.4 STATUS FORMULAS

Syntax:

<status-formula> ::= <status-constant> (2.1.1.6)

(status-variable>

<named-status-constant>

<status-function-call>

I <status-formula>)

<status-conversion> (7.0)

(<formula>) (5.0)

<status-variable> :: <variable> (6.1)

<named-status-constant> :: < (named-constant> (6.2)

<status-function-call> <function-call> (6.3)

<compile-time-status-formula> := <status-formula>

Semantics:

A <status-formula> represents a value whose type class is status.

Constraints:

A <status-variable> must be a <variable> whose type class is

status.

88

142

MIL-STD-1 89B (VS1AF)

06 June 1980

A <named-status-constant> must be a <named-constdnt> whose type

class is status.

A <status-function-call> must be a <functlon-call> whose result
value is status.

A <compile-time-status-formula> must be a <status-formula> whose
value is known at compile time (see Section 5.0).

5.5 POINIER FORMULAS

Syntax:

<pointer-formula> ::= <pointer-literal> (8.3.5)

<pointer-variable>

<named-pointer-constant>

<pointer-function-call>

(<pointer-formula>)

<pointer-conversion> (7.0)
(<formula>) (5.0)

<pointer-variable> z:= <variable> (6.1)

<named-pointer-constant> ::= <named-constant> (6.2)

<poirter-function-call> <function-call> (6.3)

<compile-time-pointer-formula> <pointer-formula>

Semantics:

A <pointer-formula> represents a value whose type class is pointer.

Constraints:

A <pointer-variable> must be a <variable> whose type class is
pointer.

A <named-pointer-constant> must be a <named-constant> whose type

class is pointer.

A <pointer-function-call> must be a <function-call> whose result

value is pointer.

89

143

"- - =- ,- ,, ~ ~ .-=, -_ ._ .L _ ..._ .- -. -." ...-.

MI .- ID ~8~B(11SAF)

A <comiipile-tim-oiter-forinnila> must be a <pointer-formula> whose
value 16 known at compile time (see Section 5.0).

5.6 TABLE FORMULAS

Syntadx:

<table-formula> . table--van abi e>

Knamned--t able-const ant>

I((< dhle-foriula>)

< tallc-conversion> (7.0)
(<furmula>)(5.0)

0tableu-va i abl e> :: <variable> (6.1)

<narled-t ai1,le-constant> Kiai'ed-c Otis tatt> (6.2)

Semantics:

A (table-formula> rvpre sents a value whose type class Is table.

Constraints:

A <t able-va ri able> must be a <variable> whose type class is table.

A <named-table-constant> must)je a (naned-constant> whose type
class is table.

MIL-STD--1589B (USAF)
06 June 1980

6.0 DATA REFERE-NCES

6.1 VARIABLES

<variable>
(named-variable>

I<byte-functijn-var~able>

I<rep-ftunct1Gn-v.ari.V)e>

(fk'nCton-nair.> (3.2)
<named-variable>

<Item>

I <table>iem

I (table-entry>

I (block-item>~

I (block-table>

I block-tabje-iteru\

<Item>I (lock-table-entry)

(item) (~Item-rname>(2
1)

I (item-dereference>
<table>

(rable-name>
(2.1.2)

I <table-dereference>

[<subscript>]
I (table-dc refe rence>]

<table-entry> :: <table-name>
(2.1.2)

<subscript>

I(t alble-dereference>
<-;ubsc rfpt>

4 9?
4

lL-STD-1589B (USAF)
06 June 1980

(block-item> =<item-name> (2.1.1)

[(block-dc reference>]

(block-table> :=<table-name> (2.1.2)
[(block-dereference> I

(block-table-item> <table-item--name> (2.1.2.3)
[(subscript>]
[O(loc k-dc ref ere nce>

(block-table-entry> <table-name> (2.1.2)
<subscript>
[(block-dc reference> I

(block-dereference> (dereference>

<item-dereference> (dereference>

<table-dereference> <dereference>

<dereference> @ (pointer-item-name>

I@ (<pointer-formula>) (5.5)

<pointer-Item-name> (item-name> (2.1.1)

I<table-item-name> (2.1.2.3)

< constant-item-name> (2.1.3)

(subscript> (<index>,...)(5.1.1)

<index> := <integer-formula> (5.1.1)

I<status-formula> (5.4)

<bit-function-variable> BIT (-bit-variable> , (5.2)
(fbit> <n(bit>)(6.3.3)

<byte-functlon-variable> BYTE
(character-variable> , (5.3)
<fbyte> , (nbyte>)(6.3.4)

<rep-function-variable> (rep-conversion> (7.0)
(named-variable>)

92

............................... S.

MIL-STD-1589B (USAF)

06 June 1980

Semantics:

A <variable> designates a data object whose value can be changed by
assignment. A <named-variable> designates a data object whose value can
be used in a formula and changed by assignment. A <dereference>

,asignates the data bjcct whose address is contained in the

<pointer-item-name> or <pointer-formula> of the <dereference>.

An <item> variable designates either an object declared in an Item

declaration or an object po nted to by a typed pointer whose type-name
attribute is an item type. In the latter case the Item Is referenced

with an <item-dereference> (J.e., the pointer is 'ereferenced to obtain

the Item).

A <table> variable designates either an object declared in a table
declaration or an object pointed to by a typed pointer whose type-name

attribute is a table type. In the latter case the table is referenced
with a <table-dereference> (i.e., the pointer is dereferenced to obtain
the table). The type class of a <table> Is table.

A <table-item> variable designates an Item component of a table.
If the table is dimensioned, the subscript indicates from which entry

the item is to be obtained. If <table-item-name> was declared in a

<table-type-declaration> (rather than a <table-item-declaration>) the

<table-dereference> references the particular table from which the item

is to be--obtained.

A <table-entry> variable designates an entry in a dimensioned
table. The table is referenced either with a (table-name> or with a

<table-dereference>.

The type class of a <table-entry> is table for entries declared
with an <ordinary-table-body>, <specified-table-body>, or

<table-type-name>, and otherwise is the type specified by the underlying

<item-type-description>. (Note that <table -entry> is yn tactIcally a

subscripted <table-name> or <table-dereference>.)

If the type class of a particular (table-entry> Is not table, any

operation or Intrinsic function except LOC, NWDSFN, and FEP applied to

that entry is interpreted as applying to the Item whose type class and

attributes are given b3 th omerlying <jtm-type--dsciiption>. LOC,
NWDSEN, and REP are interpreted as applying to the entire physical space
occupied by the object, including filler bits prt-ceding or following the

Item.

A <block-item> variable designates an Item component of a block.

If the <item-name> was declared in a 'hlock-tvp-declaration>, the

<block-dereference> references the particular block from which the Item

Is to be obtained.

93

19
14 7

MIL-STD--1589B (USAF)

06 June 1980

A (block-table> variable designates a table component of a block.

If the <table-name> was declared in a <block-type-declaration>, the

<block-dereference> references the particular block from which the table

is to be obtained.

A <block-table-item> variable designates an item componert of a

table which is itself a component of a block. If the table is

dimensioned, the subscript indicates from which entry the item is to be

obtained. If the <table-item-name> was declared in a (block-type-

declaration>, the <block-dereference> references the particular block

from which the item is to be obtained. (Note that if the

<table-item-name> was declared in a <table-type-declaration>, it cannot

be obtained as a <block-table-item> variable but must be obtained as a

<table-item> variable with a <table-dereference>.)

A <block-table-entry> variable designates an entry in a dimensioned

table which is contained in a block. If the <table-name> was declared

in a <block-type-declaration>, the (block-dereference> references the

particular block from which the table entry is to be obtained.

A <bit-function-variable> is the use of the BIT function in an

assignment context (i.e., the target of an assignment statement or an

actual output parameter) to designate that a specified substring of the

(bit-variable> is to be used as a variable. <Fbit> indicates the

starting bit and <nbit> indicates the size of the substring. Bits are

numbered from the left beginning with zero.

A <byte-function-variable> is the use of the BYTE function in an

assignment context (i.e., a target of an assignment statement or an

actual output parameter) to designate that a specified substring of the

(character-variable> is to be used as a variable. <Fbyte> indicates the

starting character and <nbyte> indicates the size of the substring.

Characters are numbered from the left beginring with zero.

A <rep-function-variable> is the use of the <rep-conversion> in an

assignment context (i.e., the target of an assignment statement or an

actual output parameter) to designate that the <named-variable> is to be

treated as a bit string variable whose size is the number of bits of

storage actually occupied by the <named-variable>.

Constraints:

A <subscript> must be present in a <table-item> or

<block-table-item> if the type of the table is dimensioned.

A <subscript> in a <table-item>, <table-entry>, <block-table-item>,

or <block-table-entry> must contain the same number of (indices> as

there are <dimensions> in the <dimension-list> of the declaration of the

94

MIL-STD-1589B (USAF)

06 June 1980

table's type. Furthermore, the type of each <index> must be the same as
the type of the corresponding <dimension> and the value of each Index
must be within the bounds specified for that dimension. If the
designated table is a formal parameter and the <dimensions> were

specified as *, the indices must be <integer-formulas> (even if bounds
of an actual parameter on a particular invocation are of status type),
and the value of each index must be in the range 0 through NN-l, where
NN is the number of elements in that dimension of the actual parameter.

If the <table-item-name> in a <table-item> was declared in a
<table-type-declaration>, the <table-ltem> must contain a <table-
dereference> whose pointer is of the appropriate type.

If the <item-name> in a <block-item> was declared in a

<block-type-declaration>, the <block-item> must contain a <block-
dereference> whose pointer is of the appropriate type.

A reference to a <table-item> must not access storage outside the
bounds of the table containing that <table-item>.

If the <table-name> in a <block-table> or <block-table-entry> was
declared in a <block-type-declaration>, the <block-table> or
<block-table-entry> must contain a <block-dereference> whose pointer is
of the appropriate type.

If the <table-item-name> in a <block-table-item> was declared in a
<block-type-declaration>, the <block-table-item> must contain a
<block-dereference> whose pointer is of the appropriate type.

<Fbit> and <nbit> must not designate a substring beyond the bounds
of the <bit-variable>. <Nbit> must be greater than zero.

<Fbyte> and <nbyte> must not designate a substring beyond the
bounds of the <character-variable>. <Nbyte> must be greater than zero.

A <function-name> can be used as a <variable> only within the body
of a function having that <function-name>, and then only as the

left-hand side of an assignment statement. The other valid uses of

<function-name> are described in Section 3.2.

A p(inter to an undimensioned parallel or tight table type cannot

he used in a <derefereuce>.

The value of a pointer used in a <dereference> must be in the
rmplementation-defined set of valid values for pointers of Its type. A

pointer whose value is NULL cannot be dereferenced.

MIL-STD-1589B (USAF)
06 June 1980

6.2 NAMED CONSTANTS

SYntax:

<named-constant> :: <constant-item-name> (2.1.3)

<constant-table-name> (2.1.3)

I <constant-table-Item-name>
[< s u)s cr ipt>] (6.1)

<constant-table-name> (2.1.3)

<subscript> (6.1)

<control-letter> (4.2)

<constant-table-item-name> ::= <table-item-name> (2.1.2.3)

Semantics:

A <named-constant> designates a constant data object whose value

can be u;ed in a formula but cannot be changed.

A <constant-item-name> designates an object declared in a constant

item declaration.

A <constant-table-name> designates an object declared in a constant

table declaration.

A <constant-table-item-name> designates an item component of a

constant table. If the table is dimensioned, the <subscript> indicates

from which entry the item is to be obtained.

A <constant-table-name> followed by a <subscript> designates an

entry in a dimensioned constant table.

A <control-letter> designates an object created in a <for-clause>

whose <control-item> is a single letter.

Constraints:

A <subscript> must follow a <constant-table-item-name> if the table

is dimensioned.

A <subscript> following a <constant-table-item-name> or <constant-

table-name> must ccntain the same number of <indices> as there are
<dimensions> in t.ae <dimension-list> in the declaration of the table.

Furthermore, the type of each <index> must be the same as the type of

the corresponding <dimension> and the value of each <index> must be

96

150

Bill-. -

MIL-STD-1589B (USAF)
06 June 1980

within the bounds specified for that <dimension>.

Constant tables and items selected from constant tables via

subscripts cannot be used as compile-time values.

A <control-letter> may be referenced only within the

(controlled-statement> of a <loop-statement> whose (for-clause> created

that <control-constant>.

6.3 FUNCTION CALLS

§n ax:

(function-call> :=<user-defined-function-call>

(Intrinsic-function-ca]
1 >

I (machine-specific-fuinCtion-call>

(user-defined-functoncall>: (function-name> (3.2)

[<actual-parameter-list>j (4.5)

(intrinsic-function-call> :: (c-function> (6.3.1)

I<next-function> (6.3.2)

I bit-function>, (6.3.3)

I byte-function> (6.3.4)

I shift-function> (6.3.5)

< abs-function> (6.3.6)

< sign-function> (6.3.7)

I size-function> (6.3.8)

I bounds-function> (6.3.9)

< nwdsen-function> (6.3.10)

< status-inverse-function) (6.3.11)

(machi ne-specific-fuct ion-

call> :: <function-name> (3.2)
[<actual-parameter-liSt>) (4.5)

97

151

W '- -

MIL-STD-1589B (USAF)
06 June 1980

Semantics:

Execution of a <functlon-call> causes invocation of a function.

Any actual parameters are bound to the corresponding formal parameters

as described in Section 3.3.

A <user-defined-function-call> causes invocation of a function

defined in a <function-definition>. The type of the value returned by

the function is the type specified by the <item-type-description> in the

<function-heading> of the <function-definition>.

An <intrinsic-function-call> causes Invocation of a language-

defined function. A description of the language-defined functions is

contained in the following sections. The type cf the value returned by

each function is described in the corresponding section.

A <machine-specific-function-call> causes invocation of a

machine-specific function (see Section 3.5).

Constraints:

Actual parameters in the <function-call> must match the formal

parameters of the called function in number, type, and parameter list

position according to the rules given in Section 3.3.

6.3.1 LOC FUNCTION

SYnPtax:

<loc-function> :: LOC (<boc-argument>)

<oc-argument> <named-variable> (6.1)

<block-name> (2.1.4)

<statement-name> (4.0)

<procedure-name> (3.1)

<function-name> (3.2)

<block-dereference> (6.1)

Semantics:

The LOC function can be applied to the <oc-argument> to obtain

the machine address of the word in which the <oc-argument> is stored.

If the <boc-argument> is a <named-variable> or <block-name> that was

91
]52

MJL-STD-1589B (USAF)

06 June 1980

declared with a <type-name> TT, the type of the value returned by the

LOC function is P TT (i.e., a typed pointer). Otherwise, the type of

the value returned by the LOC function Is P (i.e., an untyped pointer).

If the (oc-argument> is a <statement-name>, <procedure-name>, or

<function-name> the (oc-function> yields an untyped pointer whose value

Is the machine address used to access the designated statement or
subroutine.

Constraints:

The LOC of a subroutine whose name appears in an

<inllne-declaratIon>, or of a <statement-name> whose defiiltlon appears
in such a subroutine, is Implementation-defined.

Note:

The LOC function cannot be applied to an intrinsic function.

6.3.2 NEXT FUNCTION

S ynt a x:

<next- funct ion> N =)EXT (
<next-argument>

<increment-amount>

<next-argument> ::= <pointer-formula> (5.5)

I <status-formula> (5.4)

<increment-amount> ::= <integer-formula> (5.1.1)

Semantics:

If the <next-argument> is a <pointer-formula>, the value returned
by the NEXT function is the arithmetic sum of the representation of the

<pointer-formula> plus the <increment-amount> * LOCSINWORP (i.e., the
<pointer-formula> is treated as an integer). The type of the value

returned is a pointer of the same type as the <next-argument>.

If the <next-argument> is a <status-formula> and the value of the
<increment-amount> is N, the value returned by the NEXT function is the

Nth successor (or predecessor if N is negative) of the value of the

<status-formula> In this <status-list>. The type of the value is the

same as the type of the <next-argument>.

99

MIL-STD-1589B (USAF)
06 June 1980

Constraints:

The <next-argument> cannot be a <status-constant> that belongs to

more than one status type (unless explicitly disambiguated with a

<status-conversion>), nor can it be the <pointer-literal> NULL.

The type of the <status-formula> must be a status type with a

default representation.

When the <next-argument> is a <status-formula>, the

<increment-amount> must not cause the NEXT function to return a value

out of range of the type of the <next-argument>.

The value of the <pointer-formula> and the value of the pointer

result must be in the Implementation-defined set of valid values for

pointers of its type.

Note:

The value of the <next-argument> may he negative.

6.3.3 BIT FUNCTION

Syntax:

<bit-function> BIT (<bit-formula> , (5.2)

<fbit> , <nbit>)

<fbit> <integer-formula> (5.1.1)

<nbit> ::= <integer-formula> (3.1.1)

Semantics:

The BIT function selects a designated substring from the

<bit-formula>. <Fbit> indicates the starting bit and <nbit> indicates

the size of the substring. Bits are numbered from the left beginning

with zero. The type of the value returned is a bit string of the same

size as the <bit-formula>. The designated substring is right justified

in the result and padded on the left with zero bits as necessary to fill

the size.

Constraints:

<Fblt> and <nbit> must not designate a substring beyond the bounds

of the <bit-formula>. <Nbit> must be greater than zero.

100

54

MIL-STD-1589B (USAF)

06 June 1980

6.3.4 BYTE FUNCTION

Syntax:

<byte-function> : : BYTE (<character-formula> , (5.3)

<fbyte> , <nbyte>)

<fbyte> <integcr-formTla> (5.1.1)

<nbyte> ::- (Integer-formul a> (5.1.1)

Semantics:

The BYTE function selects a designated substrIng from the
<character-formula>. <Fbyte> indicates tie starting character and
<nbyte> Indicates the size of the substrIng. Characters are numbered
from the left beginning with zero. The type of the value returned is a
character string of the same size as the <character-formula>. The
designated substring is left justified in the result, and padded on the
right with blanks as necessary to fill the size.

Constraints:

<Fbyte> and <nbyte> must not designate a substring beyond the
bounds of the <character-formula>. <Nbyte> must be greater than zero.

6.3.5 SHIFT FUNCTIONS

Syntax:

<shift-function> ::- <shift-direction>
(<bit-formula>,

<shift count>) (5.2)

<shift-direct ion> :- SHIFTL

SHIFTR

<shift-count> :- <tnteger-formula> (5.1.1)

_Semantics:

The SHIFTL function performs a logical left shift of the

<bit-formula> by the number of positions Indicated by <shift-count>.
The SHIFTR function performs a logical right shift of the <bit-formula>
by the number of positions indicated by <shift-count>. In both cases,
vacated bits are filled with zeros and bits shifted out are lost. If
the <shift-count> is greater than or nal to the size of the

01
1 5i

MIL-STD-1589B (USAF)
06 June 1980

<bit-formula>, the result Is a bit string with all zero bits. The type

of the value returned by a <shift-function> is the same as the type of
the <bit-formula>.

Constraints:

The value of <shift-count> must be non-negative and less than or
equal to MAXBITS.

6.3.6 ABS FUNCTION

Syntax:

<abs-function> : :- ABS (<numeric-formula>) (5.1)

Semantics:

The ABS function produces a value that is the absolute value of the
<numeric-formula>. The result is equivalent to - <numeric-formula> if
<numeric-formula> is negative and equivalent to + <numeric-formula>
otherwise.

6.3.7 SIGN FUNCTION

Syntax:

<sign-function> : SGN (<numeric-formula>) (5.1)

Semantics:

The SCN function returns a value according to the following rules:

Numeric Formula Value

> 0 +1
= 0 0
<0 -

The type of the value is S 1.

02

156

M .M. LW .Midm , - '

4 ?IIL-STb-1589B (USAF)

06 June 1980

6.3.8 SIZE FUNCTIONS

Sylax:

(size-function> :=<size-type>

((size-argument>)

<size-type> : =BITSIZE

IBYTESIZE

IWORDSIZE

<size-argument> :-<formula> (5.0)

I<block-name> (2.1.4)

I<type-name> (2.1.1.7)

Semantics:

The BITSIZE, BYTESIZE and WORDSIZE functions return the logical
size of the <size-argument> in bits, bytes, and words respectively. The
type of the value-*returned is S MAXLNTSIZE. The logical BITSIZE of each
data type in the language will be described below. The logical BYTESIZE
is equal to BLTSIZE/BLTSINBYTE if BITSIZE MOD BITSINBYTE = 0 and
BITSIZE/BITSINBYTE+1 otherwise. Similarly, the logical WORDSIZE is
equal to BlTSIZE/BITSINWORD if BITSIZE MOD BITSINWORD =0 and
BITSIZE/BITSINWORD+1 otherwise.

Bit: The BITSIZE of an object of type B NN is NN

Integer: The BITSIZE of an object of type U NN is NN and S NN
is NN+1

Fixed: The BITSIZE of an object of type A MM, NN is
MM1+NN+ I

Float: The BITSIZE of a float object is the number of bits
of storage the object actually occupies.

Character:The BITSIZE of an object of type C NN is
7N*BITSINBYTE.

Pointer: The BITSIZE of a pointer object is BITSINPOINTER.

Status: The BITSIZE of a status object is the <status-size>.
If <status-size> was specified, the BITSIZE is specified in
the object's <status-item-description>. If no <status-size>

103

157

MIL-STD-1589B (USAF)
06 June 1980

was specified, the BITSIZE is minimum number of bits of

storage needed to represent objects of that type.

Table: The BITSIZE of a table or table entry that is not
tightly structured is the number of bits from the leftmost bit

of the first word occupied by the table or table entry to the
rightmost bit of the last word occupied by the table or table
entry. The BITSIZE of a tightly structured table entry is

<bits-per-entry>. The BITSIZE of a tightly structured table
is the number of bits from the leftmost bit of the first word

occupied by the table to the rightmost bit of the last entry,
where the last entry occupies <bits-per-entry> bits. Note:
the BITSIZE of a <table-entry> whose type class is not table
is the BITSIZE of the item sprcified by the underlying

<item-type-description>.

Block: The BITSIZE of a block is NN * BITSINWORD, where NN
is the number of words the block occupies.

Constraints:

A BITSIZE function must not be applied to a table whose size in

words exceeds MAXINT(MAXINTSIZE)/BITSINWORD.

A BYTESIZE function must not be applied to a table whose size in

words exceeds MAXINT(NAXINTSIZE)/BYTESINWORD.

6.3.9 BOUNDS FUNCTIONS

Syntax:

<bounds-function) ::= <which-bound>
(table-name> (2.1.2)

<dimension-number>

<which-bound> LBOUND

I UBOUND

(dimension-number> ::= <compile-time-integer-formula> (5.1.1)

Semantics:

The LBOUND function returns the lower bound of the specified

dimension of the designated table. The UBOUND function returns the

upper bound of the specified dimension of the designated table. A

<dimension-number> of zero refers to the leftmost (dimension> in that

table's <dimension-list>; a <dimension-number> of one designates the

104

158

JAL

MIL-STD-1589B (USAF)

06 June 1980

next-to-leftmost <dimension> in the list, etc. The type of the returned

value will either be an integer type or a status type depending on the
declaration of the designated table. If the table is a formal parameter

with a * dimension, the type will always be integer, LBOUND will always

return zero, and UBOUND will return NN-l, where NN is the number of

elements in that dimension of the actual parameter.

Constraints:

The <dimension-number> must be greater than or equal to 0 and less
than the number of dimensions in the designated table.

6.3.10 NWDSEN FUNCTION

Syntax:

<nwdsen-function> NWDSEN (<nwdsen-argument>)

<nwdsen-argument> ::= <table-name> (2.1.2)

I <table-type-name> (2.2)

Semantics:

The NWDSEN function retuins the number of words of storage

allocated to each entry in the named table or table type. The return

type is S with default size.

6.3.11 STATUS INVERSE FUNCTIONS

Syntax:

<status-inverse-function> ::- FIRST (
<status-inverse-argument>)

LAST (
<status-inverse-argument>)

<status-inverse-argument> ::= <status-formula> (5.4)

I <status-type-name> (2.1.1.6)

Semantics:

The FIRST function gives the value of the lowest-valued

<status-constant> In the <status-list> associated with the

<status-inverse-argument>. The LAST function gives the value of the

105

159

MIL-STD-1589B (USAF)
06 June 1980

highest-valued <status-constant> in the <status-llst> associated with

the <status-inverse-argument>.

The return value has the type indicated by the

<status-inverse-argument>.

106

160

MIL-STD--1589B (USAF)
06 Junte 1980

7.0 TYPE MATCHING AND TYPE CONVERSIONS

Syntax:

(bit-conversion> \(bit-type-conversion>

I rep-conversion)>

<bit-type-conversion> : (* (bit-Lype-description> *) (2.1.1.4)

I<bit-type-name> (2.1.1.4)

I B

<Integer-conversion> :: *<integer-type-description> *) (2.1.1.1)

I nteger-type-name> (2.1.1.1)

IS

I U

(floating-conversion> :=(* (floating-type-description> *)(2.1.1.2)

I floating-type-name> (2.1.1.2)

IF

<fixed-cunversion> :: (fixed-type-description> *) (2.1.1.3)

I<fixed-type-name> (2.1.1.3)

<character-coniversion> : (*<character-type-description> *)(2.1.1.5)

I chieracter-type-name>(2115

IC

(status-conversion> :: (<status-type-name> *)(2.1.1.6)

(status-type--name> (2.1.1.6)

(point er-conve rs Ion> := (* (pointer-type-description) * (2.1.1.7)

I pointer-type-name> (2.1.1.7)

I P

10t7

161

MIL-STD-1589B (USAF)
06 June 1980

<table-conversion> :: < (* (table-type-name> *) (2.1.2)

I <table-type-name> (2.1.2)

<rep-conversion> ::= REP

Semantics:

In Section 2.1, the definition of type was given. In some cases,
implicit conversions will be performed to achieve type equivalence. In
this section, for each type class, rules will be given regarding when
two types are the same, when an object of one type will be implicitly
converted to another type, and when and how an object of one type can be
explicitly converted to another type. Implicit conversions will never
be performed on arguments to explicit conversions or when the types of
the data objects are required to match exactly. With all the
conversions (both implicit and explicit), if the value produced after
conversion is not in the range of values of the type being converted to,
the conversion is illegal.

For purposes of type equivalence, a user-defined <type-name> is
considered an abbreviation for its specification.

A <formula> may be explicitly converted to another type by
enclosing it in parentheses and preceding It with appropriate
conversion. Note that if the conversion does not consist of a single
letter or name, it must be enclosed In (* and *).

Omitted attribute specifiers in type conversions imply the same
default values as for declarations of those types.

Type equivalence and conversion rules for each of the J73 type

classes are as follows:

Bit (B)

Type Equivalence: Two bit types are equivalent if their size
attributes are equal.

Implicit Conversions: A bit string will be Implicitly converted to a
bit string with a different size attribute,
with trincation on the left or padding with
zeros on the left. Implicit truncation is not
permitted when the syntax requires a
<boolean-formula>.

Explicit Conversions: Any data object except a block may be
explicitly converted to a bit string with a
<bit-conversion>. A <bit-conversion> may be

108

162

i

MIL-STD-1589B (USAF)
06 June 1980

either a <bit-type-conversion> or a
<rep-conversion>.

A <bit-type-conversion> to a type B NN takes
the rightmost NN bits of the data object's
representation. If there are fewer than NN
bits, the object will be padded on the left
with zeroes. The default value for NN is 1. A
<bit-type-conversion> may be applied to a data
object of any type. If the object being
converted is a table or table entry, all
"filler" bits (i.e., bits that contribute to
the size of the table but that are not part of
the component objects' sizes as declared) are
included in the string. If the object to be
converted is of type class character, filler
bits between bytes and unused bytes following
the end of the string are not included.

A <rep-conversion> provides a means of
obtaining the representation of a data object.
A <rep-conversion> treats a data object as a
bit string whose size is the number of bits
actually occupied by the object. This includes
all filler bits and the bits in the unused (but
allocated) bytes following the ends of
character strings. For all objects whose type
class is table, the number of bits in the bit
string is the same as the BITSIZE of the
object. For all <table-entries> whose type
class is not table, the number of bits in the
bit string is the total number of bits
(including filler bits) in the table entry. A
<rep-conversion> can appear in the target of an
assignment statement (see Section 6.1). A
<rep-conversion> can be applied to
<named-variables> only; further, it cannot be
applied to tables declared with * dimensions,
to entries in parallel tables, or to tables
whose size in bits exceeds MAXBITS.

Integer (S and U)

Type Equivalence: Two integer types are equivalent if they are
both S or U and if their size attributes are
equal.

Implicit Conversions: An integer type will be implicitly converted to
any other integer type.

109

163

MIL-STD-1589B (USAF)
06 June 1980

Explicit Conversions: An (integer-conversion> Is used to explicitly

convert a data object to an integer type. The
conversion can be applied to objects of bit,
integer, fixed, float, and pointer only.

A bit string will be treated as representing
the value of the integer type if the size of

the bit string Is less than or equal to the
BITSIZE of the Integer type. Otherwise, the

conversion is illegal. If the size of the bit
string is less than the BITSIZE of The integer
type, the bitstring will be padded on the left
with zeroes.

An integer, fixed, or floating data object will
be converted to the Integer type, with
truncation or rounding if specified.

Converting a pointer to an integer type is
equivalent to first converting the pointer to
type B BITSINPOINTER and then converting the
bit string to integer.

Floating (F)

Type Equivalence: Two floating types are equivalent If their
precision attributes are equal.

Implicit Conversions: A floating type will be implicitly converted to

a floating type of the same or greater
p-erision regardless of the round-or-truncate
attribute. A <real-literal> will be implicitly
treated as a <floating-literal> in the contexts
specified in Section 8.3.1. (Implicit floating
conversions do not change numeric values
although they may cause a change in how the
value is represented.)

Explicit Conversions: A <floating-conversion> is used to explicitly
convert a data object to a floating data type.
The conversion can be applied to

<real-literals> and to objects of bit, integer,

fixed, and float types only.

A bit string will be treated as representing
the value of the floating type if the size of
the bit string equals the BITSIZE of the
floating type. Otherwise the conversion is
Illegal.

4 110

164

U.q

17
MIL-STD-589B (USAF)

06 June 1980

An integer, fixed, or floating data object will
be converted to the floating type, with
truncation or rounding as specified in the
<floating-conversion>. Rounding and truncation
are performed with respect to the implemented

precision of the type specified by the
<floating-conversion>.

Fixed (A)

Type Equivalence: Two fixed point types are equivalent if their
s-ale attributes are equal and their fraction
attributes are equal.

Implicit Conversions: A fixed point type will be implicitly converted
t an ther fixed point type if the scale and
fraction attributes of the target type are both
at least as large as those of the source type.
A <real-literal> will be implicitly treated as
a <flxed-literal> in the contexts specified in
Section 8.3.1. Implicit fixed conversions do
not change the numeric value represented except
when the implemented precision of the result
value is less than the implemented precision of
the value being converted (see Section
2.1.1.3); in this case, rounding or truncation
occurs with respect to the implemented
precision of the converted value. This
situation occurs only when assigning to a
packed fixed table item (in an assignment
statement, loop <control-variable>, table
preset, or output parameter); the
<round-or-truncate> attribute of the table item
determines whether the assigned value is
--unded or truncated.

Explicit Conversions: A <flxed-conversion> is used to explicitly
convert a data object to a fixed point data
t". The conversion can be applied to
< -literal> and to objects of bit, integer,
CIA , and float types only.

A bit string will be treated as representing
the value of the specified fixed point type if
the size of the bit string equals the BITSIZE
of the fixed point type. Otherwise, the
conversion is illegal.

111

165

MlI.-STD-1589B (USAF)
06 June 1980

An integer, fixed, or floating data object will

be converted to the specified fixed point type,
with truncation or rounding as specified in the
(fixed-conversion>. Rounding and truncation
are performed with respect to the Implemented

precision of the type specified by the

<fixed-conversion>.

Character (C)

Type Equivalence: Two character types are equivalent if their
size attributes are equal.

Implicit Conversions: A character string will be implicitly converted
to a string with a different size attribute,
with truncation on the right or padding with
blanks on the right.

Explicit Conversions: A <character-conversIon> Is used to explicitly
convert a data object to a character data type.
The conversion can be applied to objects of
type bit or character only.

A bit string will be treated as representing
the value (excluding filler bits between bytes)

of the character type if the size of the bit
string equals the BITSIZE of the character
type. Otherwise the conversion is illegal.

A character string will be converted to type C

NN by taking the leftmost NN characters. If
there are fewer than NN characters, the value
is padded on the right with blanks.

Pointer (P)

Type Equivalence: Two pointer types are equivalent if they are
both untyped pointers or if they are both typed
pointers referring to the same

<type-declaration>.

Implicit Conversions: A typed pointer will be implicitly converted to
an untyped pointer.

Explicit Conversions: A <pointer-conversion> is used to explicitly

convert a data object to a pointer type. The
conversion can be applied to bit, integer, or
pointer data objects only.

112

166

HIL-STD-1589B (USAF)
06 June 1980

A bit string will be treated as representing
the value of the pointer type if the size of
the bit string equals the BITS1ZE of the
pointer type. Otherwise the conversion is
illegal.

Converting an integer to a pointer is
equivalent to first converting the Integer to
type B BITSINPOINTER and then converting the
bit string to a pointer.

Converting a pointer to a different pointer
type means that the pointer will be considered
as a pointer of the specified type.

Status

Type Equivalence: Two status types are equivalent if (1) they
both have default representation, their size
attributes are the same, and both
<status-lists> contain the same <status-
constants> in the same order, or (2) they both
have identical programmer-specified
representations, their size attributes are the
same, and both <status-lists> contain the same
<status-constants>.

Implicit Conversions: A status type will be implicitly conve-ted to a
status type that differs only in its size
attribute. Furthermore, a status constant
belonging to more than one status type is
implicitly disambiguated in the following
contexts: (1) when it is the source value of
an assignment statement, it takes the type of
the target variable; (2) when it is an actual
parameter, it takes the type of the
corresponding formal parameter; (3) when it is
in a table <subscript> or
<preset-index-specifier>, it takes the type of
the corresponding (dimension> in that table's
declaration; (4) when it is a loop
(initial-value>, it takes the type of the
<control-variable>; (5) when it is in an
<item-preset> or <table-preset>, it takes the
type of the item or table item being
initialized; (6) when it is an operand of a
<relational-operator>, it takes the type of the
other operand; (7) when it is in a
<case-index-group>, it takes the type of the

113

167

- TT7Ji3EM

1 ..- STP- 589B (USAF)
Of .ule 1980

<case-selector-formula>; and (8) when It Is a
(lower-bouno> or (upper-bound>, It takes t lie

type of the other bound.

Explicit Conversions A <status-conversion> Is us;ed to e. 1 l c I y
convert a data object to a status type. The

conv'ersion can be applied to bit or statos data
objects only.

A bit string will be treated as rcpreuenting
the representational v.lue of the status type
ii the ize of the bit string equals tl.e

BITSIZE of the status type and te value of the
bit string is within the range o)f values of t lie
status type. Otherwi se the conwv, rsi on is
Ill egal.

A <status-conversion> may be used to assert the

type of a status object. This wi l he
requi red when a status const ant be Ilngs to more
than one type and it is used In a c,atext otler
than these enumerated above under implicit
conversions. Except for status objects whose
types differ only in their size attLib1utes, a
status object cannot be couverted to a
different status type without first (onvertinp
it to a bit string.

Table

Type Equivalence: Two tables have equivalent types if they are
both ordinary or both specified, their
<structure-specifier> attribute is the same,
they have the same number of dirensions, they
have the same number of ele eents in each
dimension, they have the same number of items

in the same textual order in each entry, the
types (including attributes) of the items are
equivalent, the (explicit or implied) packing
specifier on each of the items is the sane (for
ordinary tables), the !OPI)ER directive is
either present In both tables or absent in both
tables, the <words-per-entry> attribute is the
same (for specified tables), and the
location-specitlers of the items are the same
(for specified tables). (Note that the names
of the items, as well as 'he types and bounds
of the dimensions, need not be the same.) A
table entry is considered to have no

114

168

...... " *- m ia,.m 'i.. " -.

MIL-STD-1589B (USAF)
06 June 1980

dimensions. A table whose entry contains an

item-dpclaration is not considered equivalent

in type to a table whose entry in declared

using an unnamed Item description.

Implicit Conversions: No implicit conversions are performed.

Explicit Conversions: A bit)r table data object may be explicitly

converted to a table type with a <table-
conversion>.

A bit string will be treated as representing

the value of the table type if the size of the

bit string equals the BlISIZE of the table

type. Otherwise the conversion is illegal.

A <table-conversion> may be applied to a table

object of that type merely to assert its type.

(A table object cannot be conveited to a

different table type witlnwit first converting

it to a bit string).

115

169

MIL-STD-1589B (USAF)

06 June 1980

8.0 BASIC ELEMENTS

8.1 CHARACTERS

Syntax:

<character> : <letter>

I <digit>

I <mark>

I <other-character>

<letter> ::= A B I C DI EI F

IG1 H Il JI KI L

IM IN 01 PI Q I R

IS IT I U IVI WI X

IY Z

<digit> :: 0 1 I 2 I 3 1 4 I 5

I 6 7 I 8 I 9

<mark> + - I * I / I > I <

I = I @ I . I : I , I ;

I C() I " '! I % I I

I $ blank

Semantics:

The text of a J73 <complete-program> is a continuous stream of

<characters>. However, in some contexts, the end of an input record has
significance (see Section 8.2).

Note that in the standard character set for the language <letters>
are defined to be upper case letters only. <Marks> are used either
alone or in conjunction with other characters as operators, delimiters,
and separators. <Other-characters> are the remaining implementation-
dependent characters, which are accepted within <character-literals> and
<comments>, and which may also be used as described below. Each

116

170

-7•'7

MIL-STD-1589B (USAF)

06 June 1980

implementation must define these characters, as well as the ordering of

all <characters> in a collating sequence.

Some of the standard characters are not universally available;

therefore, the following standard alternates are defined:

Standard Character Alternates

@ or ?

-> or

I V

If any of the above standard characters are unavailable on a particular

machine, one of the recommended alternates for that character must be

used. (The first column of alternates is intended for the CDC standard
63 and 64 character sets; the alternates ? and are intended tor the
Univac 1108.) If the : is replaced, the % must also be replaced.

An implementation that has lower case letters available in addition

to uppercase may permit their use in programs provided that within

<names>, <reserved-words>, <letters>, <status-constants> and all

<literals> except <character-literals> they are considered

interchangeable with their corresponding uppercase letters (e.g., XX

and xx denote the same name); whereas within <character-literals> they

are considered distinct.

An implementation that has square brackets available may allow

to be used for (* and] to be used for *) but may not prohibit the use

of the (* and *).

Constraints:

If a left bracket is substituted for (*, then a right bracket must

be substituted for the corresponding *). If a right bracket is

substituted for *), then a left bracket must be substituted for the

corresponding (*.

117

171

MIL-STD-1589B (USAF)
06 June 1980

8.2 SYMBOLS

Syntax:

<symbol> :: <name> (8.2.1)

<reserved-word> (8.2.2)

1 <operator> (8.2.3)

S<literal> (8.3)

<status-constant> (2.1.1.6)

1 <comment> (8.4)

1 <define-string> (2.4)

<define-call> (2.4.1)

<letter> (8.1)

<separator> (8.2.4)

Semantics:

<Characters> are combined into <symbols> to form the vocabulary of
the language. <Symbols> are indivisible units and 'cannot contain
blanks, except as noted in Section 8.5. Only <comments>,
<define-strings>, define parameters enclosed in quotation marks,
<bit-literals>, and <character-literals> may extend across multiple
input records; all other symbols are terminated by the end of an input
record.

8.2.1 NAMES

Syntax:

<n,,me> :=<letter-or-S>

<letter-digit-$-or-prime>..

<letter-or-$> ::= <letter>

I$

<letter-dlgit-$-or-prime> :: < (letter> (8.1)

118

172

,, ar,

MIL-STD-1589B (USAF)

06 June 1980

I <digit> (8.1)

I $

Semantics:

<Names> are words having programmer-supplied spellirtgs. <Names>
are used to denote entities in the <complete-program>.

Only the first 31 characters of a J73 <name> are used to determine
uniqueness. Additional characters are permitted, but are ignored.

For external names, an implementation may further restrict the
number of initial characters that determine uniqueness.

A dollar sign in a <name> is translated to an
implementation-dependent representation. This translation of the dollar
sign permits the use of a character in a <name> that might otherwise be
unrepresentable in the language. If, for example, external names in a
given system were prefixed by the character '.' a J73 implemcntation on

that system might choose to represent '$' when it occurs in a name by
the representation for '.'. Thus, the name ' $$ABC' occuring in a
source program would be translated '..ABC'.

8.2.2 RESERVED WORDS

Syntax:

<reserved-word> ::= ABORT I AbS I AND I BEGIN I BIT

BITSIZE I BLOCK I BY I BYREF

BYRES I BYTE I BYTESIZE I BYVAL

CASE I COMPOOL I CONDITION*

CONSTANT I DEF I DEFAULT I DEFINE

ELSE I ENCAPSULATION* I END I EQV

EXIT I EXPORTS* I FALLTHRU I FALSE

FIRST I FOR I FREE* I GOTO

HANDLER* I IF I IN* I INLINE

119

173

-,.. ,.. * ~ . -- , --

MIL-STD-1589B (USAF)
06 June 1980

INSTANCE I INTERRUPT* I ITEM

LABEL I LAST I LBOUND I LIKE

LOC I MOD I NENT* I NEW*

I NEXT I NOT I NULL I

NWDSEN I OR I OVERLAY I PARALLEL

POS I PROC I PROCRAM I PROTECTED*

READONLY* I REC I REF I REGISTER*

RENT I REP I RETUPN I SGN

SHIFTL I SHIFTR I SICNAL*

I START I STATIC I STATUS I STOP

TABLE I TERM I THEN I TO*

I TRUE I TYPE I UBOUND I UPDATE*

I WHILE J WITH* I WORDSIZE

I WRITEONLY* I XOR I ZONE*

Semantics:

<Reserved-words> have language-defined meanings and cannot be used
as <names>.

Those reserved words followed by an * in the above list are
reserved in order to maintain upward compatibility with future
extensions to the language and currently have no meaning in J73.

8.2.3 OPERATORS

Syntax:

<operator> : <arithmetic-operator>

I <bit-operator>

I <relational-operator>

120

174

MIL-STD-1589B (USAF)
06 June 1980

I <dereference-operator>

I <assignment-operator>

<arithmetic-operator> <plus-or-minus>

I <multiply-divide-or-mod>

I <multiply-or-divide>

I **

<plus-or-minus> + I

<multiply-divide-or-mod> ::= * I / I MOD

<multiply-or-divide> * I /

<bit-operator> : <logical-operator>

I NOT

<logical-operator> AND I OR I XOR I EQV

<relational-operator> <equal-or-not-equal-operator>

< > <= >=

<equal-or-not-equal-operator> I

<dereference-operator> ::= @

<assignment-operator>

Semantics:

The meanings of these operators are given in Sections 4, 5, and 6.
The order of combination of operators and operands is determined by

parentheses and by the operators' precedence. The operation implied by
an operator at one precedence level is combined before the operation
implied by an operator at a lower level. Within a particular
precedence level, operations are combined from left to right if the
!LEFTRIGHT directive is in effect and in an implementation-dependent
oilder if the IREAR!ANGE directive is in effect.

Precedence of operators is defined by the syntax of the language

and is summarized below:

121

175

__!no

MIL-STD-1589B (USAF)
06 June 1980

6 @, subscripting, function calls

5 **

4 *,/,MOD

3 +,-

2 0,<,<,> = >=

1 NOT, AND, OR, EQV, XOR

0 assignment

8.2.4 SEPARATORS

Syntax:

<separator> ::= () [(

I : I , I ; I !

Semantics:

<Separators> are used for the following purposes in J73:

() Expression grouping, list delimiters, status
constants, position brackets, subscripts, case
labels

(* *) Type conversions

: Statement name, case label, and preset index

terminator; loop control separator; overlay,
dimension, subrange, and parameter separator

List separator

Statement, declaration, and directive terninator

Directive indicator, formal define parameter
marker

122

176

MIL-STD--1589B (USAF)
06 June 1980

8.3 LITERALS

(literal> : <numeric-literal> (8.3.1)

I<bit-literal> (8.3.2)

< boolean-llteral> (8.3.3)

1 (character-literal> (8.3.4)

1 <pointer-literal> (8.3.5)

Semantics:

<Literals> are data objects whose value and type are Inherent In
the form of the (symbol> itself. Their values are known at compile
time, and, like other compile-time values, cannot be altered during
executi on.

8.3.1 NUMERIC LITERALS

.Syntax:

(numeric-literal> : -<integer-literal>

I<floating-literal>

I<fixed-literil>

<integer-literal> <- number>

<number> : -<digit> ... (8.1)

<'floating-literal> :: <real-literal>

<real-literal> < - digit> ... <exponent> (8.1)

I<fractional-form)

[<exponent>

<exponent> :-E [<sign>) <number>

<sign> +:

<fractional-form> <: digit> ... (8.1)

123

177_j

MIL-STD-1589B (USAF)
06 June 1980

I <digit> ...]I . <digit> ... (8.1)

<fixed-literal> ::= <real-literal>

Semantics:

An <integer-literal>, LL, denotes a decimal value. Its type is S
NN, where NN is IMPLINTSIZE(MINSIZE(LL)).

The type of a <real-literal> or a <real-literal> preceded by a

<sign> is determined by the context in which the literal appears,

namely:

when the literal is used as a preset value, it is

implicitly converted to the type of the object being

preset;

when the literal is used as an assignment value, it is

implicitly converted to the type of the target being

assigned a value;

when the literal is an operand of an infix relational or

numeric operator and the other operand is not a
real-literal, it is converted to the type of the other
operand;

* when the literal is an actual parameter, it is converted

to the type of the formal parameter;

when a literal is the <initial-value> of a loop

<control-clause>, it is converted to the type of the

<control-variable>;

when the literal is the argument of an explicit fixed or

floating conversion, it is converted to the specified

type.

If the type of an optionally signed <real-literal> is not determined

contextually, it is considered to be a floating type with default

precision.

A <real-literal> denotes a decimal value. If an (exponent> is

present, the decimal value preceding the <exponent> is multiplied by 10

to the value specified in the <exponent>.

For <real-literals>, non-<exponent> dipits in excess of

MAXSIGD]CITS will be treated as zeroes in computing the fixed or

floating value to be represented.

124

178

= =-i -:,' A X I

MIL-STD-1589B (USAF)
06 June 1980 i

Contextual determination of the type of a real-literal will not be

affected by the presence or absence of the <rearrange-directive>.

Constraints:

<Real-literals> may be implicitly converted to fixed or floating

values only.

The value of an (Integer-literal> with size SS must not exceed

MAXINT(SS).

The value of a <floating-literal> with precision PP must not exceed

MAXFLOAT(PP).

The value of a <fixed-literal> with scale SS and fraction FF must

not exceed MAXFIXED(SS,FF).

Examples:

ITEM FF F 24 = -0.1; "equivalent to presetting
with (*F 24*) (-0.1)"

ITEM RR F,R 24 = -0.1; "-O.1 Is rounded to a 24 bit
mantissa"

ITEM TT F,T 24 = -0.1; "-0.1 is truncated toward minus
infinity"

CONSTANT ITEM CC F,R 24 = 2.5;
ITEM JJ F,R 24 = CC + .3; ".3 is converted to CC's type"
IF RR > .3; ... ".3 is rounded to a 24 bit mantissa"

Note that if II is an integer it m, then II = 2.5 is illegal, since a

<real-literal> cannot be implic Jly converted to an integer value.

8.3.2 BIT LITERALS

Syntax:

<bit-literal> := <bead-size> B <bead>...

<bead-size> 1:= 1 I 2 I 3 I 4 I 5

<bead> <:= (digit>

I A B I C I D I E I F

I G I H I I I J I K I L

I M I N I 0 I P I Q I R

125

179

OW

MIL-STD-1589B (USAF)
06 June 1980

I S ITI U IV

Semantics:

A <bit-literal> represents a bit string value. A <bit-literal> is
composed of a string of <beads> whose <bead-size> in bits is indicated
in the specification of the literal. The total size of the

<bit-literal> is the (bead-size) times the number of beads enclosed
within the primes.

The <beads> of a <bit-literal> can be specified as one to five bits
in size. The <digit> preceding the B indicates the <bead-size>. Only
those <beads> whose value will fit in the <bead-size> indicated are
permitted. The digits 0 - 9 represent their actual values; the letters
A - V represent the values 10 - 31 (see Table 8-1).

126

180

__ _ -.. A

MIL-STD-1589B (USAF)

06 June 1980

t

Table 8-1. Bit-Literal Bead Values

I I Minimum I I I Miqimum I I

I Bead I Bead I Binary I I Bead Bead I Binary I

I I Size I Value I I Size I Value I

-i I I I --

0 1 0 1 G 5 1100001

I1 1 I H 5 110001

2 2 10 I 5 I 10010

3 2 I1 J 5 10011

4 3 100 K 5 10100

5 3 I101 L 5 I10101

S 6 3 I110 M 5 I 10110 1

7 3 I111 N 5 10111

8 4 1000 0 5 11000

9 4 1001 P 1 5 1110011

A 1 4 I 1010 1 Q 1 5 I 11010 1

B 4 1011 R 5 1110111

C 4 1100 S 1 5 1llO001

D 4 1101 T 1 5 111011

E 4 1110 U 5 1111101

F 4 1111 V 1 5 1111111

127

181

MIL-STD-1589B (USAF)
06 June 1980

8.3.3 BOOLEAN LITERALS

Syntax:

<boolean-literal> TRUE

I FALSE

Semantics:

<Boolean-literals> represent the two possible truth values. TRUE

is equivalent to 1B'I', and FALSE is equivalent to IB'0".

8.3.4 CHARACTER LITERALS

Syntax:

<character-literal> <character>... (8.1)

Semantics:

<Character-literals> denote strings of character values.

<Character-literals> can contain any <character> (including blank)
that is representable in an implementation. A prime character (') is
represented within a <character-literal> by two consecutive primes. The
size of a <character-literal> in bytes is the number of characters

represented within the containing primes (two consecutive primes
represent one character). The encoding of characters is

implementation-dependent.

8.3.5 POINTER LITERAL

Sjyntax:

<pointer-literal> ::= NULL

Semantics:

Any pointer item, regardless of its attribute, car, have the value

NULL, which indicates that the item points to no object.

128

18?

MIL-STD-1589B (USAF)

06 June 1980

8.4 COMMENTS

Syntax:

<comment> ::= " [<character>...j " (8.1)

I% [<character>. ..] % (8.1)

Semantics:

A <comment> has no semantic effect.

A <comment> in a <define-string> or <actual-define-parameter> is
Interpreted as part of the character sequence to be substituted when the

<define-call> is expanded.

A <comment> can appear between any two <symbols>, subject to the
constraints below.

Constraints:

A <comment> delimited by a quotation mark (") is not permitted
between a <define-name> and a <define-string> in a <define-declaration>,
or within the <actual-parameter-list> in a <define-call>.

A <comment> delimited by a quotation mark cannot contain a

quotation mark, and a <comment> delimited by a percent character (M)
cannot contain a percent character.

8.5 BLANKS

One or more blanks can be placed between <symbols>. Blanks

occurring between <symbols> have no semantic meaning.

Constraints:

Blanks cannot appear within <symbols> except in <character-
literals>, <define-strings>, <define-calls>, and <comments>.

One or more blanks must appear between any two <symbols> if the
absence of blanks could cause them to be interpreted as a single legal

<symbol>, except that whether (* represents one or two <symbols> is
contextually determined, e.g., (* represent, two symbols in the

following contexts:

TABLE AA (*) ...;
ITEM ... POS (*, 0);

I 29

AD-AO00 577 AERONAUTICAL SYSTEMS DIV WRIGHT-PATTERSON AFB OH F/S 1/3

AFSC STANDARDIZATION CONFERENCE, 1553. 1589. 1750, 1760. ADA, N-ETC(U)
NOV 80 E C GANGH. S E SMITH

UNCLASSTFTFn AS -TR-80-5050-VOL-2 NLI //EEE//EII//E

ElEElllEEllEEE
EEIIIIIIIIIIIE

MIL-STD-1589B (USAF)
06 June 1980

9.0 DIRECTIVES

Syntax:

<directive> <compool-directive> (9.1)

I<copy-directive> (9.2.1)

I skip-directive> (9.2.2)

I <begin-directive> (9.2.2)

1 (end-directive> (9.2.2)

1<linkage-directive> (9.3)

I<trace-directive> (9.4)

I Interference-directive> (9.5)

I<reducible-directive> (9.6)

I nolist-directive> (9.7.1)

I list-directive> (9.7.1)

I eject-directive> (9.7.1)

Oitn-ietie 972

I listinv-directive> (9.7.2)

I (listexp-directive> (9.7.2)

I libah-directive> (9.78)

I (ibase-directive> (9.8)

I (isbas-directive> (9.8)

I <leftright-directive> (9.9)

I<rearrange-directive> (9.9)

I<initialize-directive> (9.10)

I order-directive> (9.11)

1 30

184

MIL-STD-1589B (USAF)

06 June 1980

Semantics:

<Directives> are used to provide supplemental information to a
compiler about the <complete-program>, and to provide compiler control.

Each implementation can specify <directives> in addition to those
described here, but each must conform to the general form for a
<directive>. <Directives> begin with an exclamation point and terminate
with a semicolon, and the word following the exclamation point must not
duplicate that of any language-defined directive.

9.1 COMPOOL DIRECTIVES

Syntax:

<compool-directive> ::- !COMPOOL
[<compool-directive-list>J

<compool-directive-list> : [<compool-file-name>]
<corpool-declared-name>,...

I C [<compool-file-name>])

<compool-declared-name> : <name> (8.2.1)

I (<name>) (8.2.1)

<compool-file-name> :: <character-literal> (8.3.4)

Semantics:

A <compool-directive> is used to access definitions in a compool
module.

A <compool-file-name> is an implementation-dependent file name chat
specifies the desired compool. If it is omitted, an implicit unnamed
compool is assumed. A <compool-file-name> enclosed in parentheses
implies that all <names> in the compool are to be made available. (This
does not include <names> used in the compool that were obtained from
other compools.)

If the <compool-directive> contains a list of <compool-declared-
names>, only those names (except as noted below) will be made available.

If a <compool-declared-name> is the name of an item, table, or
block declared with a <type-name>, that <type-name> is also made
available if it is declared in that compool. (For pointer items, this
includes the name of the pointed-to-type). If a

131

185

4

MIL-STD-1589B (USAF)
06 June 1980

<compool-declared-name> is a <table-item-name>, the name of the table In
which it is contained is also made available. If a table name Is made
available, any <status-lists> and <status-type-namec> associated with
its <dimensions> are also made available, provided they are declared In
the designated compool.

If a <compool-declared-name> is the name of a table or block and is
parenthesized, all names declared in the table or block will be made
available, as well as all type names referenced in the table or block,
provided they are declared in the designated compool. If a
<compool-declared-name> is a <table-type-name> or <block-type-name>, the
names of these components will be made available whether or not the name
Is parenthesized.

If a status item name is made available, its associated
<status-list> and <status-type-name> (if any) will also be made
available, if they were declared in the designated compool.

If a <compool-declared-name> is the name of a subroutine, any
<type-names> associated with that subroutine's formal parameters and
return value will also be made available, if they are declared in the

designated compool.

Constraints:

A <compool-directive> must only occur immediately after START or
immediately following another <compool-directive>.

The <compool-declared-names> must have been declared in the
designated compool.

A <compool-declared-name> cannot be the name of a component
declared in a type declaraiion, nor can it be the name of a formal
parameter of a subroutine.

9.2 TEXT DIRECTIVES

9.2.1 COPY DIRECTIVES

Syntax:

<copy-directive> !COPY
<character-literal> (8.3.4)

132

186j

MIL-STD-1589B (USAF)

06 June 1980

Semantics:

The <copy-directive> is used to copy the contents of a text file

into a program. The <copy-directive> can be viewed as a <define-call>;
it Is expanded at the point of its occurrence by substituting the
entirety of the file being copied. The <character-literal> is an
Implementatlon-dependent file name.

9.2.2 SKIP, BEGIN, AND END DIRECTIVES

Syntax:

<sklp-directive> ::= !SKIP [<'letter>) ; (8.1)

<begin-directive> !BEGIN I<ietter>] ; (8.1)

<end-directive> ::= !END

Semantics:

The <skip-directive> is used in conjunction with a

<begin-directive> and an <end-directive> to cause text enclosed in the
latter two to be ignored in the process of compilation.

A <skip-directive> with a <letter> will suppress the processing of
all text following a <begin-directive> containing the same <letter> up
to the matching <end-directive>. A <skip-directive> with no <letter>

refers to all <begin-directives>. The text following a <begin-
directive> with no <letter> can be suppressed only by a <skip-
directive> with no (letter>.

Begin-end directive pairs can be nested. Within a begin-end

directive set whose text is being suppressed, enclosed <begin-
directives> are recognized for the purpose of matching <end-directives>.

Within a begin-end directive pair whose text is being suppressed,

<copy-directives> and <define-calls> will not be expanded.

9.3 LINKAGE DIRECTIVES

Syntax:

<linkage-directive> : : 'LINKAGE
<symbol>... ; (8.2)

133

187 A

MIL-STD-1589B (USAF)
06 June 1980

Semantics:

The <linkage-directive> indicates that the specified subroutine
does nbt obey standard J73 linkage conventions. The <symbol> string
specifies the implementation-dependent linkage type to be used in
linking the procedure.

Constraints:

The <linkage-directive> must only occur in a <subroutine-
declaration> or <subroutine-definition> between the heading and the
<declarations> of the formal parameters.

It a <subroutine-definition> contains a <linkage-directive>, every

<subroutine-declaration> for that subroutine must contain the same
<linkage-directive>.

9.4 TRACE DIRECTIVES

Syntax:

<trace-directive> := TRACE
[<trace-control>]
<name>,... ;

<trace-control> : <boolean-formula>) (5.2.2)

Semantics:

The <trace-directive> provides a run-time facility to trzce program
flow and to monitor data assignment. This "tracing" will be active from
the lexical point at which the <trace-directive> occurs in the soirce
until the end of the scope containing the directive. Its effect extends
into nested procedures declared within this lexical range of statements.

The <names> in the <trace-directive> are the names that will be
traced, i.e., certain uses of these names as described in the following
sentences will be noted in an implementation-dependent manner, for
example on a symbolic output file. For statement names, tracing of the
associated statement will be noted each time the statement is fallen
into or branched to. For data names, modification of the data object
and its new value will be noted. Hodification of a data object is
considered to have occurred upon execution of an assignment statement in
which the data object is the target or upon return from a subroutine to
which the data object was passed as an actual output parameter. For
tables, modification of the entire table, a table entry, or an item in
the table will be noted. For blocks, modification of any data contained
in the block will be noted. For subroutine names, each call to the

134

188

HIL-STD-1589B (USAF)
06 June 1980

subroutine wtll be noted. If the subroutine containing the

<trace-directive> is named in the directive and the directive is placed
immediately after the <procedure heading> or <function heading>, entry
and exit to that subroutine will be noted.

If a <trace-control> appears in the (trace-directive>, the

<trace-control> formula will be tested dynamically at each use of a
<name> as defined in the preceding paragraph. The trace output is

suppressed if the formula is determined to be false. If the
<trace-control> is omitted, it is considered to be true.

if two or more active <trace-directives> contain the same <name>,

then the lexically latest one overrides the earlier ones for that
<name>.

Constraints:

All <names> in the <trace-directive>, including names used in the
<trace-control>, except for statement names and subroutine names, must

have been declared prior to their use in the <trace-directive>.

A (trace-directive> can occur only within a <statement>.

A <bit-formula> cannot be implicitly converted to the
<boolean-formula> In a <trace-control>.

9.5 INTERFERENCE DIRECTIVES

Syntax:

<Interference-directive> IINTERFERENCE
<interference-control>

<interference-control> ::f <data-name> : (2.6)
<data-name>,... (2.6)

Semantics:

The <interference-directive) informs the compiler that it cannot
assume that the storage associated wirh the name to the left of the

colon is distinct from the storage associated with the names to the

right of the colon. In the absence of an <interference-directive> the

compiler can make optimizations on the assumption that distinct

<data-names> refer to distinct storage locations. 7f two <data-names>
refer to the same storage location, these optimizations could result in

erroneous code. If two <data-names> share the same storage, an

assignment to one name should affect the value of the other. If the

compiler optimizes on the assumption of non-interference, these

135

189

i

MIL-STD-1589B (USAF)

06 June 1980

semantics might not be preserved.

The compiler is aware of storage overlapping as a result of
<specified-table-items> and as a result of the arrangement of data
within a single overlay. This overlapping need not be reported via an

<interference-directive>. Other instances ,f overlap, e.g., as a result
of absolute addresses in separate overlays, must be stated by the use of

an (interference-directive>.

An <interference-directive> can occur only in a <declaration>.

All <data-names> in the <interference-control> must have been
declared prior to their use in the <interference-directive>.

9.6 REDUCIBLE DIRECTIVES

Syntax:

<reducible-directive> !REDUCIBLE

Semantics:

The <reduclble-directive> is used to allow additional optimization
of function-calls. A reducible function is one for which all calls with
Identically-valued actual parameters result in identical function values

and output parameter values, and which does not modify any data except
actual output parameters and automatic data declared within its own

body. If a <reducible-directive> is used to designate such functions as

reducible, the compiler may detect the existence of such common calls,

save the values returned from the initial call for use in place of any

subsequent calls, and delete these subsequent calls.

Constraints:

The <reducible-directive>, if present, must be plp:ed immediately

following the semicolon of the <function-heading>.

If a function designated as reducible is both declared and defined,
the <reducible-directive> must appear in both the definition of the

function and in all declarations of it.

9.7 LISTING DIRECTIVES

9.7.1 SOURCE-LISTING DIRECTIVES

,v t ax:

136

190

MIL-STD-1589B (USAF)

06 June 1980

<nolist-directive> !NOLIST

<list-directive> ::= ILIST

(eject-directive> !EJECT

Semantics:

Listing directives are used to provide source listing control
information to the compiler. The <nolist-directive> causes suppression
of the source listing beginning with the next source line, up to and
including the next (list-directive>, which causes the listing to be
resumed.

The <eject-directive> causes a page eject of the source listing
before listing the following source lines. The <eject-directive> is
ignored if the source listing is suppressed.

9.7.2 DEFINE-LISTING DIRECTIVES

Syntax:

<llbttnv-dtrective> I: LISTINV

<listexp-dlrective> !ISTEXP

<listboth-directive> !LISTBOTH

Semantics:

Define-listing directives allow programmer control over the text to

be included in the source piogram listing for <define-calls>.

The text contained in the listing for a particular <define-call>
depends on the define-listing directive which was in effect at thL point

of the corresponding <define-declaration> (not on the directive in
effect at the point of the <define-call>). If this directive was
!LISTINV, then the listing contains the text of the <define-call>; if
the directive was !L1STEXP, then the listing contains the expanded
string (the <define-string> after substitution of
<actual-define-parameters>); if the directive was !LISTBOTH, then the
listing contains both the invocation and the expansion.

Each define-listing directive is in effect from the lexical point
at which it appears to the end of Lhe current scope or to the point at
which the next define-listing directive appears, whichever is first.
The default define-listing directive in effect at the beginning of every
module is !LISTINV.

137

191

i

7

MIL-STD-1589B (USAF)
06 June 1980

Constraint:

<Listinv-directives>, <listexp-directives> and
<listboth-directives> may appear only in a (declaration>.

Note:

The effect of a define-listing directive for a particular
<define-call> is independent of whether a <nolist-directive> is
suppressing the source listing at the point of the <define-declaration>
being invoked.

9.8 REGISTER DIRECTIVES

Syntax:

<base-directive> !BASE <data-name> (2.6)
<integer-literal> ; (8.3.1)

<isbase-directive> : ISBASE <data-name> (2.6)
<integer-literal> ; (8.3.1)

<drop-directive> ::= !DROP
<integer-literal> ; (8.3.1)

Semantics:

Register directives affect target-machine register allocation.
Each of these three directives uses an <integer-literal> in a
target-machine-dependent way to specify which register is affected.

The <base-directive> loads the specified register with the address
of the object corresponding to the <data-name>.

The <isbase-directive> directs the compiler to assume that the
specified register contains the address of the data object corresponding
to the <data-name>, but to take no action to guarantee it.

The <drop-dlrective> frees the specified register for other use by
the compiler in generating code for subsequent statements. Both IBASE
and !ISBASE cause the compiler to dedicate the register to the value it
currently contains until !DROP or the end of the current scope is
encountered.

Register directives may be ignored in implementations for machines
on which register allocation is not meaningful.

138

192

MIL-STD-1589B (USAF)

06 June 1980

9.9 EXPRESSION EVALUATION ORDER DIRECTIVES

Syntax:

<leftright-directive> ::= ILEFTRIGHT

<rearrange-directive> ::= IREARRANGE

Semantics:

If a <leftright-directive> is in effect, operators at the same
precedence level are evaluated in left-to-right order within a given
<formula>, consistent with the order imposed by parentheses.

If a <rearrange-directive> is in effect, order of evaluation is
still constrained by parentheses and operator precedence, but the
compiler is otherwise free to rearrange the expression for more optimal
code generation, such as by applying associative and commutative laws.

The effect of each of these directives extends from the point at
which it appears to the end of the current nainescope or to the point at
which a different expression-evaluation-order directive appears,
whichever is first. At the beginning of each module, a <rearrange-
directive> is in effect by default.

9.10 INITIALIZATION DIRECTIVES

Syntax:

<initialize-directive> :: ! !INITIALIZE

Semantics:

The <initialize-directive> causes all STATIC data objects that are
not explicitly initialized via an <item-preset>, <table-preset>, or
<block-preset>, to be preset by default to all zero bits.

Its effect extends from the point at which it appears to the end of
the current namescope.

Constraint:

The <initialize-directive> may appear only in <declarations>, but
not in a <table-body> nor in a <block-body-part> nor in a
<subroutlne-declaration>.

139

193

l4

MIL-STD-1589B (USAF)

06 June 1980

9.11 ALLOCATION ORDER DIRECTIVES

Synt ax:

<order-directive> : = !ORDER

Semantics:

The <order-directive> directs a compiler to allocate storage for
the data objects in a block or ordinary table in the order in which
their declarations appear in the text of the <block-body-part> or the
<ordinary-table-options>. Lexically declared data objects that occur
earlier in text are allocated physically lower addresses, and if data
objects share a word, lexically earlier data are allocated to the left
of later data. In the absence of an <order-directive>, a compiler is
free to rearrange the physical storage layout for ease of access or more
optimal utilization of memory.

The effect of the <order-directive> extends from the point at which
it appears to the end of the current block or table. If the

<order-directive> is in a block, its effect extends to the components of
any blocks or ordinary tables contained in the block.

If an <order-directive> appears in an <ordinary-table-options> in a

<table-type-declaration>, the ordering extends to all tables declared of
that type.

Constraints:

A block affected by an <order-directive> cannot contain an

<overlay-declaration>.

The <order-directive>, if present, must be the first of the
<block-body-options> in the <block-body-part>, or the first of the
<ordinary-table-options> in the <ordinary-table-body>.

140

194

MIL-STD-1589B (USAF)

06 June 1980

APPENDIX

CROSS-REFERENCE INDEX

This appendix provides a cross-reference for terminal and
non-terminal constructs in the J73 syntax used In this manual. For each
construct, columns give the section in tho manual where It Is defined
and the s ctIons where It is used or referenced.

Construct Definition References

A 2.1.1.3, 7.0, 8.1, 8.3.2

ABORT 4.5, 4.10, 8.2.2

abort-phrase 4.5 4.5

abort-statement 4.10 4.0

ABS 6.3.6, 8.2.2

abs-function 6.3.6 6.3

absolute-address 2.6 2.6

actual-define-parameter 2.4.1 2.4.1

actual-define-parameter-list 2.4.1 2.4.1

actual-input-parameter 4.5 4.5

actual-output-parameter 4.5 4.5

actual-parameter-list 4.5 4.5, 6.3

allocation-specifier 2.1.5 2.1.1, 2.1.2, 2.1.4

AND 5.2.1, 8.2.2, 8.2.3

and-continuation 5.2 5.2

arithmetic-operator 8.2.3 8.2.3

assignment-operator 8.2.3 8.2.3

asslgnment-statement 4.1 4.0

141

195

MIL-STD-1 589B (USAF)
06 June 1980

Construct Definition References

B 2.1.1.4, 7.0, 8.1,

8.3.2

BAS9 9.8

base-directive 9.8 9.0

be ad 8.3.2 8.3.2

bead-size 8.3.2 8.3.2

BEGIN 1.2.3, 2.0, 2.1.2.3,
2.1.2.4, 2.1.4, 2.5.1,
2.5.2, 2.7, 3.1, 4.0,
4.4, 8.2.2, 9.2.2

begin-directive 9.2.2 9.0

BIT 6.1, 8.2.2

bit-conversion 7.0 5.2

bit-formula 5.2 4.4, 5.0, 5.2,
5.2.2, 6.3.3,
6.3.5

bit-function 6.3.3 6.3

bit-function-call 5.2 5.2

bit-function-variable 6.1 6.1

bit-item-description 2.1.1.4 2.1.1.4

bit-literal 8.3.2 5.2, 8.3

bit-operator 8.2.3 8.2.3

bit-primary 5.2 5.2, 5.2.1

BITSINBYTE 1.4

142

196

MIL-STD-1589B (USAF)

06 June 1980

Construct Definition References

BITSINPO INTER 1.4

BITSINWORD 1.4

BITSIZE 6.3.8, 8.2.2

bit-size 2.1.1.4 2.1.1.4

bits-per-entry 2.1.2.2 2.1.2.2

bit-type-conversion 7.0 7.0

bit-type-description 2.1.1.4 2.1.1, 7.0

bit-type-name 2.1.1.4 2.1.1.4, 7.0

bit-variable 5.2 5.2, 6.1

BLOCK 2.1.4, 2.2, 2.5.1,
8.2.2

block-body-options 2.1.4 2.1.4

*block-body-part 2.1.4 2.1.4, 2.2

block-declaration 2.1.4 2.1

block-dereference 6.1 4.5, 6.1, 6.3.1

block-item 6.1 6.1

block-name 2.1.4 2.1.4, 2.5.1, 2.6,
5, 6.3.1, 6.3.8

block-preset 2.1.6 2.1.4

block-preset-list 2.1.6 2.1.6

block-preset-values-option 2.1.6 2.1.6

block-table 6.1 6.1

block-table-entry 6.1 6.1

block-table-item 6.1 6.1

143

197

IlL-S'T-1589B (ISAF)
00 Jume 1980

Construct De fi ni ti on Refrc-'s

block-type-decla ration 2.2 2.2

block-type-name 2.2 2.1.1.7, 2.1.4, 2.2

boolean-formula 5.2.2 4.2, 4.3, 9.4

boolean-li teral 8.3.3 5.2, 8.3

bounds-f unct ion 6.3.9 6.3

BY 4.2, F.2.2

by-formula 4.2 4.2

by-or-t hen-phrase 4.2 4 .2

by-phrase 4.2 4.2

BYREF 3.3, R.2.2

BYRES 3.3, 8.2.2

BYTE 6.1, 6.3.4, P.2.2

byte-function 6.3.4 6.3

byte-function-variable 6.1 6.1

BYTEPOS I .4

LYTESI NbORD 1 .4

BYTESIZE 6.3.F, P.2.2

BYVAL 3.3, 8.2.2

C 2.1.1.5, 7.0, 8.1,
8.3.2

CASE 4.4, 8.2.2

case-alternative 4.4 4.4

144

198

HIL-STD-1589B (USAF)
06 June 1980

Construct Definition References

case-body 4.4 4.4

case-index 4.4 4.4

case-index-group 4.4 4.4

case-selector-formula 4.4 4.4

case-statement 4.4 4.0

character 8.1 2.4, 2.4.1, 8.3.4,
8.4

character-conversion 7.0 5.3

character-formula 5.3 4.4, 5.0, 5.2.1,
5.3, 6.3.4

character-function-call 5.3 5.3

character-item-description 2.1.1.5 2.1.1.5

character-literal 8.3.4 8.3, 9.1, 9.2.1

character-size 2.1.1.5 2.1.1.5

character-type-description 2.1.1.5 2.1.1, 7.0

character-type-name 2.1.1.5 2.1.1.5, 7.0

character-varlable 5.3 5.3, 6.1

comment 8.4 8.2

compile-time-bit-formula 5.1.2 4.4, 5.0

compile-time-character-formula 5.1.3 4.4, 5.0

compile-time-fixed-formula 5.1.3 5.1

compile-time-floating-formula 5.1.2 1.4, 5.1

compile-time-formula 5.0 2.1.6

compile-time-integer-formula 5.1.1 1.4, 2.1.1.1, 2.1.1.2,

145

199

MIL-STD-1589B (USAF)
06 June 1980

Construct Definition References

2.1.1.3, 2.1.1.4,
2.1.1.5, 2.1.1.6,

2.1.2.1, 2.1.2.2,
2.1.2.4, 2.1.6, 2.6,
4.4, 5.1, 6.3.9

compile-time-numeric-formula 5.1 5.0

compile-time-pointer-formula 5.5 5.0

compile-time-status-formula 5.4 2.1.2.1, 2.1.6,
4.4, 5.0

complete-program 1 .1

compound-def 2.5.1 2.5.1

compound-ref 2.5.2 2.5.2

compound-statement 4.0 4.0

COMPOOL 1.2.1, 8.2.2, 9.1

compool-declaration 2.0 1.2.1, 2.0

compool-declared-name 9.1 9.1

compool-directive 9.1 9.0

compool-directive-list 9.1 9.1

compool-file-name 9.1 0.1

compool-module 1.2.1 1.1

compool-name 1.2.1 1.2.1

CONDITION 8.2.2

conditional-statement 4.3 4.3

CONSTAN~T 2.1.3, 8.2.2

constant-declaration 2.1.3 2.0, 2.1

146
4; 200

MIL-STD-1589B (USAF)

06 June 1980

Construct Definition References

constant-index 2.1.6 2.1.6

constant-Item-name 2.1.3 2.1.3, 6.1, 6.2

constant-table-item-name 6.2 6.2

constant-table-name 2.1.3 2.1.3, 6.2

continuation 4.2 4.2

control-clause 4.2 4.2

control-item 4.2 4.2

control-letter 4.2 4.2, 6.2

controlled-statement 4.2 4.2

control-variable 4.2 4.2

COPY 9.2.1

copy-directive 9.2.1 9.0

D 2.1.2.3, 8.1, 8.3.2

data-declaration 2.1 2.0, 2.1.4, 2.5.1,
2.5.2

data-name 2.6 2.6, 3.3, 9.5, 9.8

declaration 2.0 1.2.2, 1.2.3, 2.0,
3.1, 3.2

DEF 1.2.2, 2.5.1, 8.2.2

DEFAULT 4.4, 8.2.2

default-option 4.4 4.4

default-preset-sublist 2.1.6 2.1.6

default-sublist 2.1.1.6 2.1.1.6

147

201

MIL-STD-1589B (USAF)

06 June 1980

Construct Definition References

def-block-instantfation 2.5.1 2.5.1

DEFINE 2.4, 8.2.2

define-call 2.4.1 8.2

define-name 2.4 2.4, 2.4.1

define-string 2.4 2.4, 8.2

definition-part 2.4 2.4

define-declaration 2.4 2.0

def-specification 2.5.1 2.5

def-specification-choice 2.5.1 2.5.1

dereference 6.1 6.1

digit 8.1 8.1, 8.2.1, 8.3.1,
8.3.2

dereference-operator 8.2.3 8.2.3

dimension 2.1.2.1 2.1.2.1

dimension-list 2.1.2.1 2.1.2, 2.1.3, 2.2

dimension-number 6.3.9 6.3.9

directive 9.0 1.2.1, 1.2.2, 1.2.3,
2.0, 2.1.2.3,
2.1.2.4, 2.1.4,
2.5.1, 2.5.2, 3.0,
3.1, 3.2, 4.0,
4.2, 4.4

DROP 9.8

drop-directive 9.8 9.0

E 8.1, 8.3.2

148

202

MIL-STD-1589B (USAF)
06 June 1980

Construct Definition References

EJECT 9.7.1 9.7

eject-directive 9.7 9.0

ELSE 4.3, 8.2.2

else-clause 4.3 4.3

ENCAPSULATION 8.2.2

END 1.2.3, 2.0, 2.1.2.3,
2.1.2.4, 2.1.4,

2.5.1, 2.5.2, 2.7,

3.1, 4.0, 4.4,
8.2.2, 9.2.2

end-directive 9.2.2 9.0

entry-size 2.1.2.4 2.1.2.4

entry-specifier 2.1.1 2.1.2, 2.2

equal-or-not-equal-operator 8.2.3 5.2.1, 8.2.3

EQV 5.2, 8.2.2, E.2.3

eqv-continuation 5.2 5.2

EXIT 4.8, 8.2.2

exit-statement 4.8 4.0

exponent 8.3.1 8.3.1

EXPORTS 8.2.2

external-declaration 2.5 2.0

F 2.1.1.2, 7.0, 8.1,
8.3.2

FALLTHRU 4.4, 8.2.2

149

203

MIL-STD-1589B (USAF)'
06 June 1980

Construct -Definition References

FALSE 8.2.2, 8.3.3

fbi t 6.3.3 6.1, 6.3.3

fbyte 6.3.4 6.1, 6.3.4

FIRST 6.3.11, 8.2.2

fixed-conversion 7.0 5.1.3

fixed-factor 5.1.3 5.1.3

f ixed-f ormula 5.1.3 5.1, 5.1.3, 5.2.2

fixed-function-call 5.1.3 5.1.3

fixed-item-description 2.1.1.3 2.1.1.3

fixed-literal 8.3.1 5.1.3, 8.3.1

fixed-machine-parameter 1.4 5.1.3

FIXEDPRECI SION 1.4

fixed-term 5.1.3 5.1.3

fixed-type-description 2.1.1.3 2.1.1, 7.0

fixed-type-name 2.1.1.3 2.1.1.3, 7.0

fixed-variable 5.1.3 5.1.3

floating-conversion 5.1.2 5.1.2

floating-factor 5.1.2 5.1.2

floating-formula 5.1.2 5.1, 5.1.2, 5.2.1

floating-function-call 5.1.2 5.1.2

floating-item-description 2.1.1.2 2.1.1.2

floating-literal 8.3.1 5.1.2, 8.3.1

floating-machine-parameter 1.4 5.1 .2

150

204

L~

MIL-STD-1589B (USAF)

06 June 1980

Construct Definition References

floating-primary 5.1.2 5.1.2

floating-term 5.1.2 5.1.2

floating-type-description 2.1.1.2 2.1.1, 7.0

floating-type-name 2.1.1.2 2.1.1.2, 7.0

floating-variable 5.1.2 5.1.2

FLOATPRECI SION 1.4

FLOATRADIX 1.4

FLOATRELPREC ISION 1.4

FLOATUNDERFLOW 1 .4

FOR 4.2, 8.2.2

for-clause 4.2 4.2

formal-define-parameter 2.4 2.4

formal-define-parameter-list 2.4 2.4

formal-input-parameter 3.3 3.3

formal-output-parameter 3.3 3.3

formal-parameter-list 3.3 3.1, 3.2

formula 5.0 4.1, 4.2, 4.5,

5.1.1, 5.1.3,

5.2, 5.3, 5.4,

5.5, 5.6, 6.3.8

fractional-form 8.3.1 8.3.1

fraction-specifier 2.1.1.3 1.4, 2.1.1.3

FREE 8.2.2

function-body 3.2 3.2

151

205

MIL-STD-1589B (USAF)

06 June 1980

Construct Definition References

function-call 6.3 5.1.1, 5.1.2,
5.1.3, 5.2,
5.3, 5.4

function-declaration 3.2 3.0

function-definition 3.2 3.2

function-heading 3.2 3.2

function-name 3.2 3.2, 3.3, 4.5, 6.1,
6.3, 6.3.1

G 0.1, 8.3.2

GOTO 4.7, 8.2.2

goto-statement 4.7 4.0

H 8.1, 8.3.2

HANDLER 8.2.2

I 8.1, 8.3.2

IF 4.3, 8.2.2

if-statement 4.3 4.0

IMPLFIXEDPRECISION 1.4

IMPLFLOATPRECI SION 1.4

IMPLINTSIZE 1.4

IN 8.2.2

increment-amount 6.3.2 6.3.2

152

206

MIL-STD-1589B (USAF)

06 June 1980

Construct Definition References

index 6.1 6.1

INITIALIZE 9.10

Initialize-directive 9.10 9.0

initial-value 4.2 4.2

INLINE 3.4, 8.2.2

inline-declaration 3.4 2.0

input-paramter-name 3.3 3.3

INSTANCE 2.5.1, 8.2.2

integer-conversion 7.0 5.1.1

integer-factor 5.1.1 5.1.1, 5.1.2, 5.1.3

integer-formula 5.1.I 4.4, 4.8, 5.1, 5.1.1,

5.2.1, 6.1, 6.3.2,
6.3.3, 6.3.4, 6.3.5

integer-function-call 5.1.1 5.1.1

integer-item-description 2.1.1.1 2.1.1.1

integer-literal 8.3.1 5.1.1, 8.3.1, 9.8

integer-machine-parameter 1.4 5.1.1

integer-primary 5.1.1 5.1.1, 5.1.2

integer-size 2.1.1.1 1.4, 2.1.1.1

Integer-term 5.1.1 5.1.1, 5.1.3

integer-type-description 2.1,!.1 2.1.1, 7.0

integer-type-name 2.1.1.1 2.1.1.1, 7.0

integer-variable 5.1.1 5.1.1

INTERFERENCE 9.5

153

207

MIL-STD-1589B (USAF)I

Construct Definition References

INTERRUPT 8 .2.2

interference-control 9.5 9.5

interference-directive 9.5 9.0

INTPRECISION 1.4

intrinsic-function-call 6.3 6.3

ISBASE 9.8

isbase-directive 9.8 9.0

ITEM 2 .1.1, 2.1 .72.3,
2.1.2.4, 2.1.3,
8.2.2

item 6.1 6.1

item-declaration 2.1.1 2.1

item-dereference 6.1 6.1

item-name 2.1.1 2.1.1, 2.6,
4.2, 6.1

item-preset 2.1.6 2.1.1, 2.1.3

Item-preset-value 2.1.6 2.1.6

item-type-declaration 2.2 2.2

item-type-description 2.1.1 2.1.1, 2.1.2.3,
2.1.1.4, 2.2, 3.2

item-type-name 2.2 2.1.1.1, 2.1.1.2,
2.1.1.3, 2.1.1.4,
2.1.1.5,-2.1.1.6,
2.1.1.7, 2.2

J 8.1, 8.3.2

.4 154

MIL-STD-1589B (USAF)
06 June 1980

Construct Def-Inition -Ref-erences

K 8.1, 8.3.2

L 8.1, 8.3.2

LABEL 2.3, 8.2.2

label 4.0 1.2.3, 3.1, 4.0, 4.4

LAST 6.3.11, 8.2.2

LBOUND 6.3.9, 8.2.2

LEFTRI CHT 9.9

leftright-directive 9.9 9.0

letter 8.1 2.1.1.6, 2.4, 4.2,
8.1, 8.2, 8.2.1

letter--digit-$-or-prine 8.2.1 8.2.1

letter-or-$ 8.2.1 8.2.1

LIKE 2.2, 8.2.2

like-option 2.2 2.2

LINKAGE 9.3

linkage-directive 9.3 9.0

LIST 9.7

LISTBOTH 9.7.2 9.0

LI STEXP 9.7.2 9.0

LISTINV 9.7.2 9.0

list-directive 9.7.1 9.0

155

209

MIL-STD-1589B (USAF)

06 June 1980

Construct Definition References

literal 8.3 8.2

LOC 6.3.1, 8.2.2

loc-argument 6.3.1 6.3.1

location-specifler 2.1.2.4 2.1.2.4

loc-function 6.3.1 6.3

LOCSINWORD 1.4, 8.2.2

logical-continuation 5.2.1 5.2.1

logical-operand 5.2 5.2

logical-operator 8.2.3 8.2.3

loop-statement 4.2 4.0

loop-type 4.2 4.2

lower-bound 2.1.2.1 2.1.2.], 4.4

lower-bound-option 2.).2.1 2.1.2.1

M 2.1.2.3, 8.1, 8.3.2

machine-speci fic-funct Ion-ca 11 6.3 6.3

machine-specifIc-procedure-call 4.5 4.5

main-program-module 1.2.3 1.I

mark 8.1 8.1

MAXB ITS 1.4

MAXBYTES 1.4

MAXFIXED 1.4

MAXFIXEDPRECISION 1.4

15b

MIL-STD-1589B (USAF)

')6 June 1980

Construct Definition References

MAXFLOAT 1.4

MAXFLOATPRECI SION 1 .4

MAXINT 1.4

MAXINTSIZE 1.4

MAXSIGDIGITS 1.4

MAXTABLESI ZE 1.4

MINFIXED 1 .4

MINFLOAT 1.4

MINFRACTION 1.4

MININT 1.4

MINRELPRECISION 1.4

MINSCALE 1.4

MINSIZE 1.4

MOD 8.2.2, 8.2.3

module 1.1 1.1

multiply-divide-or-mod 8.2.3 5.1.1, 8.2.3

multiply-or-divide 8.2.3 5.1.2, 5.1.3, 8.2.3

N 2.1.2.3, 8.1, 8.3.2

name 8.2.1 1.2.1, 1.2.3, 2.1.1,
2.1.1.6, 2.1.2.3,
2.1.3, 2.2, 2.4,
3.1, 3.2, 4.0,
8.2, 9.1, 9.4

157

211 1

MIL-STD-1589B (USAF)

06 June 1980

Construct Definition References

named-bit-constant 5.2 5.2

named-character-constant 5.3 5.3

named-constant 6.2 5.1.1, 5.1.2, 5.1.3,
5.2, 5.3, 5.4,
5.5, 5.6

named-fixed-constant 5.1.3 5.1.3

named-floating-constant 5.1.2 5.1.2

named-integer-constant 5.1.1 5.1.1

named-floating-constant 5.1.2 5.1.2

named-polnter-constant 5.5 5.5

named-status-constant 5.4 5.4

named-table-constant 5.6 5.6

named-variable 6.1 6.1, 6.3.1

NENT 8.2.2

nested-block 4.5 4.5

NEW 8.2.2

NEXT 6.3.2, 8.2.2

next-argument 6.3.2 6.3.2

next-function 6.3.2 6.3

nbit 6.3.3 6.1, 6.3.3

nbyte 6.3.4 6.1, 6.3.4

NOLIST 9.7

nolist-directive 9.7.1 9.0

non-nested-subroutine 1.2.2 1.2.2, 1.2.3

158

212

MIL-STD-1589B (USAF)

06 June 1980

Construct Definition References

NOT 5.2.1, 8.2.20 8.2.3

NULL 8.2.2, 8.3.5

null-declaration 2.7 2.0, 2.1.2.3, 2.1.2.4,
2.1.4, 2.5.1, 2.5.2

null-statement 4.0 4.0

numnbe r 8.3.1 8.3.1

numeric -f ormulIa 5.1 4.2, 5.0, 6.3.6,
6.3.7

numeric-literal 8.3.1 8.3

NWDSEN 6.3.10, 8.2.2

nwdsen-argument 6.3.10 6.3.10

nwdsen-function 6.3.10 6.3

0 8.1, 8.3.2

operator 8.2.3 8.2

OR 5.2.1, 8.2.2, 8.2.3

or-continuation 5.2 5.2

ORDER 9.11

order-directive 9.11 9.0

ordinary-entry-specifier 2.1.2.3 2.1.2

ordinary-table-body 2.1.2.3 2.1.2.3

ordinary-table-item-declaration 2.1.2.3 2.1 .2.3

ordinary-table-options 2.1.2.3 2.1.2.3

other-character 8.1

159

213

MIL-STD-1589B (USAF)

06 June 1980

Construct Definition References

output-paramter-name 3.3 3.3

OVERLAY 2.6, 8.2.2

overlay-address 2.6 2.6

overlay-declaration 2.6 2.0, 2.1.4

overlay-element 2.6 2.6

overlay-expression 2.6 2.6

overlay-string 2.6 2.6

P 2.1.1.7, 7.0, 8.1,

8.3.2

packing-specifier 2.1.2.3 2.1.2.3

PARALLEL .1.1.1, 8.2.2

paramter-binding 3.3 3.3

plus-or-minus 8.2.3 5.1.1, 5.1.2, 5.1.3,
8.2.3

pointer-conversion 7.0 5.5

pointer-formula 5.5 5.0, 5.2.2, 5.5,

6.1, 6.3.2

pointer-function-call 5.5 5.5

POS 2.1.2.4, 2.1.6, 2.6

pointer-item-description 2.1.1.7 2.1.1.7

pointer-item-name 6.1 6.1

pointer-literal 8.3.5 5.5

pointer-type-description 2.1.17 2.1.1, 7.0

pointer-type-name 2.1.1.7 2.1.1.7, 7.0

160

214

MIL-STD-1589B (USAF)

015 June 1980

Construct Definition References

pointer-variable 5.5 5.5

precision 2.1.1.2 1.4, 2.1.1.2

preset-index-specifier 2.1.6 2.1.6

preset-values-option 2.1.6 2.1.6

PROC 3.1, 3.2, 8.2.2

procedure-body 3.1 3.1

procedure-call-statement 4.5 4.0

procedure-declaration 3.1 3.0

procedure-definition 3.1 3.0

procedure-heading 3.1 3.1

procedure-module 1.2.2 1.1

procedure-name 3.1 3.1, 3.3, 4.5, 6.3.1

PROTECTED 8.2.2

PROGRAM1.2.3, 8.2.2

program-body 1.2.3 1.2.3

program-name 1.2.3 1.2.3

Q 8.1, 8.3.2

R 2.1.1.2, 8.1, 8.3.2

READONLY 8.2.2

real-literal. 8.3.1 8.3.1

REARRANGE 9.9

161

215

MlL-STP-1589B (USAF)
06 June 1980

Construct Definition References

rearrange--directive 9.9 9.0

REC 3.1, 8.2.2

REDUCIBLE 9.6

reducible-directive 9.6 9.0

REF 2.5 .2, 8.2.2

ref-specification 2.5.2 2.5

ref-specification-cholce 2.5.2 2.5.2

REGI STER 8.2.2

relational-express ion 5.2.1 5.2

relational--operator 8.3.1 5.2.1, 8.2.3

RENT 3.1, 8.2.2

REP 7.0, 8.2.2

rep-conversion 7.0 6.1, 7.0

repetition-count 2.1.6 2.1.6

rep-function-variable 6.1 6.1

reserved-word 8.2.2 2.1.1.6, 8.2

RETURN 4.6, 8.2.2

return-statement 4.6 4.0

round-or-truncate 2.1.1.2 2.1.1.1, 2.1.1.2,
2.1.1.3

S 2.1,1.1, 7.0, 8.1,
8.3.2

162

4 216

MIL-STD-1589B (USAF)

06 June 1980

Construct Definition References

scale-specifier 2.1.1.3 1.4, 2.1.1.3

separator 8.2.4 8.2

SGN 6.3.7, 8.2.2

shift-count 6.3.5 6.3.5

shift-direction 6.3.5 6.3.5

shift-function 6.3.5 6.3

SIKIFTL 6.3.5, 8 2.2

SHIMT 6.3.5, 8.2.2

sign 8.3.1 5.1.1, 5.1.2, 5.1.3.
8.3.1

SIGNAL 8.2.2

sign-function 6.3.7 6.3

simple-def 2.5.1 2.5.1

simple-ref 2.5.2 2.5.2

simple-statement 4.0 4.0

size-argument 6.3.8 6.3.8

size-function 6.3.8 6.3

size-type 6.3.8 6.3.8

SKIP 9.2.2

skip-directive 9.2.2 9.0

spacer 2.6 2.6

specified-entry-specifier 2.1.2.4 2.1.2

specified-item-description 2.1.2.4 2.1.2.4

163

217

MIL-STD-1589B (USAF)
06 June 1980

Construct Definition References

specified-preset-sublist 2.1.6 2.1.6

specified-sublist 2.1.1.6 2.1.1.6

specified-table-body 2.1.2.4 2.1.2.4

specified-table
-item-declaration 2.1.2.4 2.1.2.4

specified-table-optionS 2.1.2.4 2.1.2.4

START 1.2.1, 1.2.2, 1.2.3,
8.2.2

starting-bit 2.1.2.4 2.1.2.4

starting-word 2.1.2.4 2.1.2.4

statement 4.0 1.2.3, 3.1, 4.0,
4.2, 4.3, 4.4

statement-name 4.0 2.3, 3.3, 4.0,
4.5, 4.7, 6.3.1

statement-name-declaration 2.3 2.0, 2.5.1

STATIC 2.1.5, 8.2.2

STATUS 2.1.1.6, 8.2.2

status 2.1.1.6 2.1.1.6

status-constant 2.1.1.6 2.1.1.6, 5.4, 8.2

status-conversion 7.0 5.4

status-formula 5.4 4.4, 5.0, 5.4,
6.1, 6.3.11

status-function-call 5.4 5.4

status-inverse-argument 6.3.11 6.3.11

status-inverse-function 6.3.11 6.3

164

218

MIL-STD-1589B (USAF)
06 June 1980

Construct Definition References

status-list 2.1.1.6 2.1.1.6

status-list-index 2.1.1.6 2.1.1.6

status-size 2.1.1.6 2.1.1.6

status-type-description 2.1.1.6 2.1.1, 7.0

status-type-name 2.1.1.6 2.1.1.6, 6.3.11, 7.0

status-variable 5.4 5.4

STOP 4.9, 8.2.2

stop-statement 4.9 4.0

structure-specifier 2.1.2.2 2.1.2, 2.2

subroutine-attribute 3.1 3.1, 3.2

subroutine-body 3.1 3.1, 3.2

subroutine-declaration 3.0 2.0, 2.5.2

subroutine-definition 3.0 1.2.2, 1.2.3, 3.1

subroutine-name 3.3 3.3, 3.4

subscript 6.1 6.1, 6.2

symbol 8.2 9.3

T 2.1.1.2, 2.1.2.2,
8.1, 8.3.2

TABLE 2.1.2, 2.1.3, 2.2,
8.2.2

table 6.1 6.1

table-converslon 7.0 5.6

table-declaration 2.1.2 2.1

165

219 [

MIL-STD-1589B (USAF)

06 June 1980

Construct Definitlon References

table-dereference 6.1 6.1

table-description 2.1.2 2.1.2, 2.1.3

table-entry 6.1 6.1

table-formula 5.6 5.0, 5.6

table-item 6.1 6.1

table-Item-name 2.1.2.3 2.1.2.3, 2.1.2.4,
6.1, 6.2

table-name 2.1.2 2.1.2, 2.6, 6.1,
6.3.9, 6.3.10

table-preset 2.1.6 2.1.2, 2.1.2.3,
2.1.2.4

table-preset-list 2.1.6 2.1.6

table-type-declaration 2.2 2.2

table-type-name 2.2 2.1.1.7, 2.1.2, 2.2,
6.3.10, 7.0

table-type-specifier 2.2 2.2

table-variable 5.6 5.6

TERM 1.2.1, 1.2.3, 8.2.2

THEN 4.2, 8.2.2

then-phrase 4.2 4.2

TO 8.2.2

TRACE 9.4

trace-control 9.4 9.4

trace-directive 9.4 9.0

TRUE 8.2.2, 8.3.3

166

220

MIL-STD-1589B (USAF)

06 June 1980

Construct Definition References

TYPE 2.2, 8.2.2

type-declaration 2.2 2.0

type-name 2.11.7 2.1.1.7

U 2.1.1.1, 7.0, 8.1,

8.3.2

UBOUND 6.3.9, 8.2.2

UPDATE 8.2.2

upper-bound 2.1.2.1 2.1.2.1, 4.4

user-defined-function-call 6.3 6.3

user-defined-procedure-call 4.5 4.5

V 2.1.1.6, 2.1.2.4, 8.1,
8.3.2

variable 6.1 4.1, 4.5, 5.1.1,

5.1.2, 5.1.3, 5.2,
5.3, 5.4, 5.5,
5.6, 6 1

variable-list 4.1 4.1

W 2.1.2.4, 2.6, 8.1

which-bound 6.3.9 6.3.9

WHILE 4.2, 8.2.2

while-clause 4.2 4.2

while-phrase 4.2 4.2

167

221

M.IL-STD-1589B (USAF)
06 June 1980

Construct Definition References

WITH 8.2.2

WORDSIZE 6.3.8, 8.2.2

words-per-entry 2.1.2.4 2.1.2.4

WRITEONLY 8.2.2

X 8.1

XOR ';.2.1, 8.2.2, 8.2.3

xor-continuation 5.2 5.2

Y 8.1

Z 2.1.1.2, 8.1

ZONE 8.2.2

168

222

MsIL-STD-1750A (USAF)
2 July 1980
SUPERSEDING
14IL-STD-1750 (USAF)
21 February 1979

MILITARY STAND)ARD

SIXTEEN -BIT COMPUTER INSTRUCFION SET ARCHITECTURE

FSC IPSC

223

I hj, Milix\ StLdiPiLd ii~ *jppI(vctI fr i i by flic tOCpIM1n1 l nthe ii Voice, and is 1,nle for use by Al

I), ,11,I .t~ -;IIi~d Ai:,'Icc K'I l, LI I I)nr i f I hQI 't kensc.

111,11t I% ii It 1111 L)nI II I I t hoI II' 'C 'IddLI I t' Ii .%(.Iu:lt '%I;,IcIll.i ~\~~ s I h\~ I t[A sm A:I N I %55.W vIight
II,iic 'oil Alli I '.ac Hx. 011w(i -I ,3. by wnq i thc seff addibYI,,, StL(Iaiion~IiI I)oLiCt Illiprol)VflI

Pi I,;ifi (DD1) V I I ,20) .ippc.iiin Iil theIC end it I his docilflk t or by Icu~r.

14 11 Sit) 17',tA ()lJ't..l
July 1O00

M(ONl AND) I'J101W-O - - - -

S((((0 - - -,

1 2 Iu' m O'- - - 1
1 3 A1)I i) 1 bility- 1
1.4 ~uui I

2 1l r.c I) [i I r -DO- I P 1 N IS- .

3 B l PI 11 lollS 1

3. 1 Acctuml ator 1
3.2 A d d I cs, --
3 .3 AriIlnetic logic unit (ALU) - -

3.4 Avionics- -

3.5 Base register I
3.6 [i t 1
3.7 Byte - -

3.8 Central processing unit (CPU)- I
3.9 Control Imnit 2
3. 10 Gerieral putrpose register 2

3. 11 Index register 2
3. 12 Inpjt/output (1/0) -2
3. 13 Inst'uction- 2
3. 14 Instruct ion counter (IC) . . .7

3.15 InstrucLiou set architecture (ISA)- 2
3. 16 Interrupt- - - - - -- - 2
3.17 Memory- 2
3. 18 Operation code (OPCODE)- 2
3.10 Operalld 2
3.20 Page register 2
3.21 P'Iogo am;,1ld i pl)ut/output (PIO) 2
3.22 Register 2
:123 RuUjstv transfer language (RTL) - - - 2
3.24 Reserved .- - --- -. 2
3.25 Spare- - - 2
3.26 Stack - - - - --- 2
3.27 SLack pointer 3
3.28 Status t,.ord registe| 3
3. 29 Word 3

S(,ll4 Il IEQII[II' S - - - - - - - - - 3

4. 1 O.Ita fci'Iats - - - - - - - - - -3

4 1.1 Slnl!. ro i, vn (i xu1 . int data 3
,1.1.? ,ut,' prci:,lIfon I ixod po10 l d ta- - - - 4

*1 I .3 I ill d p)iint lp'o .11(15(Is 4
,4 I '" t'. on fi',d ' l. in l o '..I fI ow - 4

. ".. ,I I I), t ,I n I ,)i t (.I i . -. . . . 4.
I\ i m) pilic t.1 t~ 401In uq p it ta~i ~ ~ "t 1''+t~ ,; 1 pf ,ci!',, 1 e l w 1114.1 pn] !oilit data - -5

4. 1 I 1)):! i ll lt n , and,, - - - - - .. 6

22-

. + . .. t - - , -.,, I + - "-- L E '" -- '.+ .
1

J

I / r- 17 0A (II. AI)

2 .uty 1380

4. 1 .8 1runcat i m of t l atitrg poi ut i i:,1l -L G

4 1 .9 Results ul() iv iin - - i

4. ? Instruct i(i tnrmaL.-

4 2. 1 legist.r Lo 1.9 is I:r It - - /
4 2 1] Sti'ucI I0 (COnl tt'ur :l t, i fu' u .r , -. - 7
4 2.3 Base re1,t, ive formit 7

4 2.4 Base rel.1 iv indi .. :d turiihtt
4. 2. I o0 9 in:.--, I ic t io o o dl - - 8
4 2. Immediato opfrode io t, f ino rina - 8
4.3 Ad ,A re ss inq odeS - - - - 8
4.3.1 Registur direct (R) - - -

4.3.2 Memory dir'(o t ()) - - -,

4 3.3 f."Ln y II rn,-t - in x(I,(10X) A (-

4 ,i. ,4 Memory idi t (i) r t - - - Ic
4. 3. 5 llei;;ory nd ir u(: t .'i Lu pre- indexing (IX) - I
4. 3.6 1mm d i le long (;1) - - -

4.3 ./ Imlie d ia I o (0 rL (IS) - - -10

4.3. 7.1 I ed iate i. 'h1o t)os if ive (ISP) - - - 10
4. 3./.2 Immediate ihour tn egativt (ISN) - - - 1
4. 3.8 Instruct on counLer relaLive (ICR) -- 10
4.3.9 Base rulaLive (B)- 10
4. 3.10 Base relative--indexed (BX) 10

4.3.11 Spec ial (S) 10
4.4 Registers and support features 10

4 .4 .1 General registers - . . .- - 10
4.4.2 Special registers -. . .- - 11

4.4.2. 1 Instruct ion counter (IC) --- - -. 11

4.4.2.2 Status word (SW) - - - 11

4.4.2.3 Fault register (FT) - -.-. . 12

4.4.2.4 Interrupt mask (I1K) - - .- .- - - 13
4.4.2.5 Pendirg interrupt register (PI) - - - 13
4.4.2.6 Input/output interrupt code registers (IOIC)(optional) 13

4.4.2 .7 Page registers (optional) 13

4.4.2.8 Memory fault status reg(ister (MFSR) (optional) - 13
4.4.3 Stack - 14

4.4.4 Processor initialization -.-------- 14
4.4.4.1 Processor reset state .-- - - - - 14
4.4.4.2 Power up -.. 14
4.4.5 Interval tIimp rs (optional) 14
4.5 Moeic ry 15

4.5.1 Memory addressing 15

4.5.1.1 lIhmory addressing arithmetic - - - 15

4.5. 1.2 Memory addiessing lunodary constraints - - 15

4.5. 2 Expanded memory address ing (optional) - - 15
4.Fi.2.1 Group sclu:ction l

4.5.2.2 Page rolistcr word forl,-at 15

4.5. 2 3 la iI i,tl imp Il it nLa L ions of ex)a-nled lmmni ry add t ss i 9 - 18

4.5.3 IMlao ry iI i Iy (19pI inOt I) .- - - - 1
4. 5. 4 Mon i ' bI m k u)i v te tt (opt i ona 1) -- - 18
4. .!, I t ot i 5" , o till .. l, t, I n It 'Ill u ;io ry - - I V

4 5 1, :i 1: 1, 1 , lt i n I) - - - 18

4 .5 .1 l v':; I \ ' d I. " , I y I , , a , :. - - 18
I. li t i I ; I (.o n I O 1 1 8

226

C "'.I

1l . 111 1750]A (l.,Ar)
2 July 1900

4.0, Il t(',rruliLS 18
4 . , 1, . 1 Int rrutlo arcr, 1 anc:+ 18

4.t. 1.2]nt1;e'i'llpt Solwil'e COnlt'(l . 18
4. . 1 .3 tnt,!r ipt p iri ' ily (lof ii oll ons - 21

4.C. 1 .4 Int(uirilupL vectoring inecha ii ism - 21
4. 7 Inlij L /oiltplut 1

4. 1. Input 22

4.7 .2 Oil tput 22

4.7. 3 I;put/otI tput commands . 22

4.7 .4 1 nput/oulput command part1 it ion ing --- - - - 22
4. .5 Input/output interrupts (optional) . .- 22
4.1 6 [p(Idicated I/O meimory locations - -- 22
4.8 Insti ticLito s -22

Al.8. 1 Invalid instrucL ions - -- 22

4.J.2 Mnemonic conventions -- --- - 22

4.8.3 Iistruction matrix - .. -- 23

1.8.4 Instruction set notation -.-- - - - 23

5 DETAIli ED 29QIlIIIt.IFIJIS-- - 9

5.1 Fxecute input/output- 29
5.2 Ver.tored input/output- 33
5.3 Set bit -. 34
5.4 Reset bit- 35
5.5 Test biL -. 36
5.0 Test and set hit 37
6.7 Set variable bit in register - - .-. . . .- 38
5.8 Reset variable bit in register -. .- ----- - 39
5.9 Test variable bit in register -. ------ - 40
5.10 Shift left logical . . - ..------- 41

5.11 Shift right logical---------- - 42
5.12 Shift right arithmetic -. - ------ -43
5.13 ShiIt lIet cyclic .-- - - 44
5.14 Double shift left logical .-.-- 45
5.15 Double .hi t ight loqical . ..-- - 46
5.1r Double shift right arithmetic - ---- 47
5.17 Double shiL left cyclic 4 6
5.1'1 Shift. logical, count in register .-.. . . 49
5.1 Shift ari-thmetic, count in registcr . .- 50
5 21) Shift cyclic, count in register . .- .51
5 1Double shift logical, count i, register . 52

)2)oublu :shllt arithmetic, count in register . 53
toublu shift cyclic, COLIt in register- 54
Ju111) on cold ition --.-.- --5-

S , t, n , I n % u or t i n o- - - - -,-

, Ih . ,,I ,c, it t. ioui l1y o -. . . . 59
,,) , it, ii ,ijkwl to (.,viu O) 60

S,,"1 Ilti'n(. h if 1,',S authall (e1,o) CI
, I'.l 110 1 1 ' ' t V" o N c -t i v .. - - 02

it iu".s thIn ur. I-quil to (,'ere) - - - 03
* I i., u I qruu.ui er I h il (lulro)- - - 54

lil' ll' h I I I. I(I u (/ irn) - - - b(i)

* , ! +u u i It it i L ,' , , " II in .r (!11ti I 1O (iero) - 0

227

N II ',10 1/P)1[IA 1)';A I)

2 Jully AlU

.35 oa st Ittis 6

3) Star:k 1Ct ml jump to. subrout ine . 68
U.31 Iltt. a C a id te!.i t rn ifroin subroutine - 69

s i Silug 1e pre i ion load -. -O------- - 70

.. Doul , pI i . I luc i i-Ull Iload - - ---- - - - 72
40 ta d lot 1. illc I v I , tost-s - - - - - - - - - - 73

5.4 1 .xteilujed prfc is ion f I aL ing po inlt load- - - - - - 74
b.4 lod I ri tipptr byte ------------- - 75
S.43 l oad fru ,]ower1 byte ------ --------- 76

".4.1 Pop ull i L lu g I istors off the stack--- - - - 77
i.t S i ig e 1 1 s i O StoLre ..-- - - 78

5 lb Store a non-e lljat ive constant- - - - - 79
b.4/ flov imil1 I1) 1 o words, illor1iy- to-iiileiory - - - 80
5., 3 Doible pOcision st l e- - -... 81
.. 11) Store r , is to e t rough mask- 82

5.5L Store 1klIt. i 1e regisIers- 83
5..I I xtended i) rucision floating pointL store- 84

5.52 Store into upper byte-.-.- 85
5.53 Store into lower byte .- - -86
5.!4 Push multiple registors onto the stack 87
b.55 Sitgle plrc ision integer add--89
5.56 Increlleitt memory by a positive integer -- - 91

5 Sitngle prc s ion ,,2olute value of register - 92
i Doubl, pre.isioln aholut e value of register - 93

5.5 Double precision inLeger add- 94
5. t0 tloating po int add- 95
5.61 Extended precision floating point add- 97
5. 62 floating point absolllte value of register -- 98
5.63 Single precision integer subtract- 99
5.u1 Decrement memory I)y a positive integer- 101
5.55 Single prucision negate register - -102

5.6G Double piecision negate register - -103
5.67 Double proc is ion inLugir subtract -- 104
5.68 Floating point subtract- 105
5.69 fxtonded precision floating poiint subtract -- - 107
5./0 FIoating p~oint egate registe-r108
5.71 Single precision inLeger multi) ly with 1 -bit product - 109

5. 72 Single prccision integer multiply with 32-bit product 110
5.73 Double pr,:cision integer multiply-- - 11
b. 74 Floating point multiply- 112
t' / Exte nded prec ision floating point multiply - 114
5. 76 Single lioc is ion inteflor div id; with 16-b it dividend - - 116
5 77 Single prcc isiion integer divide with 32-h it dividend - 117
5 .t Double 1)roc s iot itttoger divide .-. . 118

f 0.loat inl I-) itt div ide -119
5. 0 I xtlnd 1 l)rec is ion floating point divide . ..- 121
5 II1 lmd us iv,; lg icil OR-- 122

6 12 Ltog ical A'MD - ... 123
I, x I xclts iv log ica I Of? . e. 4

I, 1 i II I I mli6l to 1 I i t -- 126

! V1, L iv, I t 1 1 I i t I i [I r) f Io. I I git point 121
S It /(~ Cniv,, l - l iLl l I l1(On I 1o,1I iln] poiij l to 32) it ini. ger - 128

228

i111 - SlD- i) /S (P; A
? July 19110

5.88 Conw lt 32-bil. i4) i ' It 1, ox ii'm d p ec i' . i oi f lI l m t U point 129
8 ') 1 x(.h 1- ;,' hy 1: by S 1! i iss i - -i - - 130

0 1 Ixcha(words in :lq t.ei .. t 1 131
S '1 Singl vi' c-'isionl Coipa eo - 132
.92 Co:pare hnPtwion liwit s -.. 133

5.93 Double precision crwpare - . .. 134
! 94 Floatin; poinl. cn;opai'O - 135

5.95 Lxtended prucision Floating point compare - - 136

5. 9G No operation- 137
5.97 Break point - 138

INI)LX- - - - - - - - - - 140

Nil

229

___________ I

Mil1 -1,11) 1760A (U'IAI
2 July 19110

I Expandu(f Incm;ry inapp inil dia~gramn - - - - 16

2 Ifltecrrlj) Systici [1iloch't - - -20

3 InterrunL vuni' ,Ing System - - - - - - - -21

230

2 July 390

'TAIII I'S

"[,!hl£Page

Sin(I.Ie prec is ion fixed 1)Oif! lIi bers 3

II Doub I e i)rec ii on f i xed po i n t nuibers 4
Ill 32-) it. f oat ing point n iiL mh(:rs- 5
IV 48-b it extended float ing point numbers- 6
V Address ing modes and instruct ion word format 9
VI Processor reset state - - - - - 14
VII AL. code to access key mapping - 17
VIII Interrupt del initions -19
IX Input/otutput channel groups -23

X Operation code matrix -. . . 27
X1 Extended operation codes -28

231

j .

till -STD-1750A (USAF)

2 July 1980

I S(OII A l' 'I l:R 'OS I

I I S tc. I his tIili di defin les 1the W Int Ititi set ,trh 1C ~cto IC (I SA) for .i riirnc comnputers. It docs not definec
specific 1111iillciitiiii details ofa comteILtr.

1.2 l'i 111\. lc piiripo)e of ti s documnent is to estahlislt a tiiifomti in, troLCtiOn set architecture for airborne
coMn p I tcS Whih tel shl he uscd in Air Vi-~ce a% ionic weapi n systemfs.

1.3 L\M~jviabilily. This st.aidard is inicitied to he used to define only the ISA of aliihorne computers. System-
uniqLue 1-cq 0 Lenenis(I) ith s speed, weight. po weCr, additinal urn 1l/1111p ii comflmands, an d en vi ronmen tal
operating chairacerritic-, aic defined in the coinpti specification fir each comnputer. Application is not restricted to
anyv pat ticuilar a. inic fi inction or speciltic hardware imiplemientat ion h') - his scindaiid. (icrilly. the ISA is
appli caib I to, i. d ,il boh used for, comipuLters thait perfin such fu nct ions as mi dciatc acciiracy navigation.
comipuited air rcle&se po in~ts, weapon deli' cry, air rcndc,'.ous, stores iiLLnagLeniet, aircraft gm~dalice. and aircraft
mlinagenlic it. I h% ismtind ird is not rest 1nc ted to implementiiatins of 'stand -; Licti co mpute rs such ats at IfisIiol
contptieL or a tire controil coimputer. Application to) the entire range ofaLS onicS fuinctionis is encouraged such as
stability and control, display processing and control, thnust management, and electrical power control.

1.4 Blenefits. 'he expected bencfits of this standard ISA are thc use and re-uise of available sitppoit softwarc such
as compilers arid inistruction level simulators. Other benefits may also be achieved such as: (a) reduction in total
support software gained by the use of dhe standard ISA for two oir more computers in a weapon system, and (b)
software development independent of hardware development.

2 REFERENCED) DOCUMENTrS
Not applicable.

3 DI)FNITIONS

3.1 Accumulator. A rcgistcr in the arithmetic logic unit used for intermediate storage, algebraic sums and other
arithmetic and logical results.

3.2 Addre . A nuntber which identifies a location in memnory where information is stored.

3.3 Arithmetic logic unit (AI.U). That portion of hardware in the central processing unit in which arithmetic and
logical operations are performed.

3.4 Avionics. All the electronic and electromechanical systems and subsystems (hardware and software) installed
in an aircraft or attached to ic. Avionics systems interact with the crew or other aircraft systems in these functional
areas: communications. navigation, weapons delivery, identification, instrumentation, electronic warfare,
reconnaissance, flight control. engine control, power distribution, and support equipment.

3.5 Base register. Any general register used to provide the base address portion of the derived address for
inru~fctions using the base relative or base relative-indexed addressing modes.

3.6 Bit. Contraction of binary digit: may be either zero or one. In informiation theory, a binary digit 'Is equal to
one binary decision or the designation of one of two possible values or states of anything used to storc or convey
information.

33 jlyvte. A group of eight binary digits.

3.8 Central vrocessing unit (CPU). That portion of a computer that controls and performs the execution of
instructions.

233

MIl-STIJ-1750A (USAF)

2 July 1980

3.9 C ontiol uinit. [hat portio II oflliardkk~lI e I II tlic C1L thIAt direcci, ',C(ItICInce 0l It PCrI'MIOJP, ititctei ctx coded
wNt ri ctions. I nd init iates proper ci inands to ill ir par is ofii thmcmpu ter.

3.101 (icner'il nirj-jose register. A re lstcr thu itima'b sdfl l IIIItcJ1dlg~i 1CftoIIIIIdX g
sffing, Inpuit outiput, and gencial storage of temlporr dasta.

3. 11 I ndex I\gxe. A reg ister diht contains a qu iiit)t for modifiat ion oif an xk rs iithiti pt~ rna nen tIy
miodifying the address.

3.12 In ItII/oitiout (1/0J). 'I'lhatlpor-tion ol' a coip iter wlii cliin tc rrices to thecx te ii.~! wld.

;.13 listruction. A pfigrarn code which tells the compter01 w hat to do.

3.14 instruction counter(I l)'. A register in the CPU that holds the address of dic next instiuct ion ti4 hc exeuitcd.

3.15 instruct ion set architectujre (ISA. '[hec attributes of a digital computer as ieen hy a maI.Chine (iscil))
language programnncr. ISA inic I tidtie pro cessor- and inpult/out pu tinstruct io n scts. their 6 irmii t s iipe ration Lindex,
and addressin ri odes: memnory imainagemen t and part itiontinig if accessible tio the machiinc LinrgLI.Hige proi gramime r.
the speed of accessible clocks: internlpt strtucture: and the manner of use and foirimat oif till registers ;mid mcniory
lo cat ions that ni'iv he directly i iniputlated or tested by at macinie language programn. I his definituioi excludes tire
ti me or speed of any operation, internal computer prt itioin 1g. electrical and physical i rgan i/ato Cir ~cuits and
coinporie its (ifO teciMPI e r. Inino flictu ring technology, mfenmory organi/ation ini ernory cycle tim inclad mTcmli rv
bits widths.

3.16 Interrupt. A special control signal that suspends the normal flow Of the Processor operations and allows the
Processor to respond to a logicallyV Unrelated or unpredictable event.

3,17 Memory. 'M'at portion of a computer that holds data and instructions and from which they can be accessed at
a later time.

3.18 Operation code (OPCODF W. That part of an instruction that defines the machine operation to be perforined.

3.19 Opecrand. '[7hat part of an instruction that specifies the address of the source, the address of the destination, or
the data itsell'on which the processor is to operate.

3.20 Page reister. A register which is utsed to supply additional address bits in paged memory addressing
schemes.

3.21 Programmed innut/outnut (PIO). A type of' 1/0 channel that allows program control of information transfer
between the computer and an ex ternal device.

3.22 Register. A device in the CPU for the temporary storage of one or more words to facilitate arithmetical.
logical, or transfer operations.

3.23 Register transfer langutage (W1711). A language used to desribe operations (upon registers) which are caused
by the execution of each instruction.

3.24 Rese,,rved. Must not be used.

3.25 SprEg. \ frameIwo k for usage is defined by the standard w ith particulars Ilie defined by tile application
requirements.

3.26 tic. A sequence of memory locations in which data mnay bc stored and rcviiesed (in i last-in-ftrst-out
(1.11:0) basic.

2

234

1,1t1-SID-1750A (USAF)
2 July 1910

3.27 Sc ir kj pinti er. A re!,tr tlut poits to the last itri iii i uc ;uack.

3.28 Stiu, %void uegisctr. A register whose state is delined b somev pilot c\ent occurrene in the computcr.

3.29 Word. Sixteen bits.

4 GENERAl RlVQUI1Rl-MlNT'S

4.1 lDia formiat . 1 hc instruction set shall support 16-hit fixed point single prccin, P-bit fixed point double
precision, 32-bit floating p~oint and 48-bit floating point extended precision daia in 2*s comiew representation.

4.1.1 Sik le ciio Fiedpoint da a. Single precision 16-bit fixed point data shall be ceprcscntcd as a 16-hit 2's
conmplemnt integer 1nibr with the most significant hit (MSII) as tie sign bit:

MSB LSB

0 1 15

Examples of single precision fixed point numbers are shown in table 1.

TABLELI Single precision fixed point numbers

I Integer I18-Bit Hexadecimal Word

I 32767 I7 F F F
-------------------------------- I

I 16384 I 400 0

I 4096 I1 0 0 0I
------- -------------------------- I

I 21 0 0 0 2
-------------------------------- I

1 0I 0 01I
-------------------------------- I

I 0 0 0000 I
-------------------------------- I

I -1 F F F F

I -2 F F F E
-------------------------------- I

I -4096 IFOOO0 0

I -16384 IC 0 0 0
-------------------------------- I
I-32767 8 80 0 1
-------------------------------- I
I -32768 I8 0 0 0

3

235

1,111-SFD -1750A (USAF)
2 July 1980

4.1.2 lohlsLj&ko lcjida ouhlc p't"4 i' I'I 'wd poirf (I 11. 'I1! hC c
2's etOiileiiient integcr nurnih Cl \iithc ti-no"Ii y I .1 1 hrt V"BY)o ill, fil' %1'1 A". d i '1 '1(

MSB I S13

0 1 l5 16 .31

1 Ait pies of machinei represent Iitt io ~i do1)ble precision fi ~cd poit numt iii ii el si m n in t hi, f I

I A Ill F 11. 1NIl)ule nrcij~t !jcd nin nPumbers

I InLeg er 1 32- B it Hexaitdeciinal1 Wo rd I
I -------------- I-----------------------I

I2,147,483.647 1 7 F f F I ff F I

1,073.741,824 1 4 0 0 0 0 0 0 0
--------------- I --------- -------------

2 0 0 0 000 02
---------- ---------------------------

I1 0 0 00 00 01
------------- ---------------------------

I0 0 00 00 00 0
----------- ---------------------------

I F F F F F F F F

----------- --------------------------- I
I-2 I F F F F F F F EI

-------------- I-----------------------I
I-1,073,741,825 I C 0 0 0 0 0 0 0
--------------- I-----------------------
I-2,147.483,647 8 00 00 00 1
--------------- I-----------------------
I-2,147,483,648 j 8 0 0 0 0 0 0 0

4.1.3 Fixed noint operands. All operands for fixed point adds, subtracts, multiplies and di\ ides arc integer. A
Fixed point overflow shall be defined as arithmetic overflow if the result is greater than 71:1::1, or less than 800016
for single precision and grcater than 7FFFll1I or less than 8000 0001(for double precision.

4.1.4 Results on fixed point overflow. On fixed poin: operations %hich cause over flow. dhc operation shall he
per-formed to) completion as if the MSI~s are present and the 16 I.Slis for single precision or thec 321 .Slis for double
precision shall be retained in the proper register(s). I)isision by zero) shall produce at fixed point overflow and
return results of all z~eros.

4.1.5 I-loatinp point data. Floating point data shall be represented as a 32-bit quantity consisting of a 24-hit 2's
complement mantissa and an 8-bit 2's complement exponent.

4

236

Mil-S~TD- I bA (IISAI)
2 July 19380

t4SL I ',I M'SH LSB

SI Mantissa I xponent I

0 1 23 24 31

1 0AIt jOII 11ibI)CFalC rcprsented .is a fractional Ii intiCa IiIIics 2 sir'.Cd to thc powerc ofit eh xpnent. All
10,1[11' ' iIIII ,iIonithCr' arC atLIIICd 11ornralj1iCd 01r 110inli point /cio it the hcgiirii ol a floahinig point operation

.ind thIiis~t ioah flsatiiig point) opelahions Ire n~onllihil/ed (a nior iii.ilitd iiiiing point numb-ter has the ,ign otthc
hi.1isNi' m11d h61C rxt hit oF opposit Val) or floating point /cio. A tliiaiing point /co i N defined aS (W000 001)016,

tllotL ,,, ,1 Oh() IIISd dilt1 J1 /Cro exponenit (00)1 ,,). An cexoendcd floatilt point icro is doic,. as, 00010 0000) l00016,
ohAt i. i / cr0o manitisa anrd n icro ex poncnt. Some cxamnples ot thc ima h rue epresen lition lot- 32 bit lloating point
nihiilc0 iilc sho5 n iii table I1l.

I A HI Ill. 32-2it o tat ing poin t nuin ihc

I Hexadecimal Notation
I Decimal Number Mantissa EXP

----------- -------------------- I
I0.9999998 x 2 127 7FFF FF 7F
----------- -------------------- I
I0.5 x " 127 I4000 00 7F
----------- -------------------- I
0.625 x 2~ 4 5000 00 04

-- I
I0.5 x 2 1 1 4000 00 01
----------- -------------------- I
I0.5 x 2 0 I4000 00 00
----------- -------------------- I
I0.5 x 2-1 I4000 00 FF
----------- -------------------- I
0.5 x 2-128 I4000 00 80 I

0---------- ------------- -----------------------
I0.0 x 20 0000 00 00
----------- -------------------- I
I-1.0 x 2 0 I8000 00 00

--------- -128------- -----------------------I
I-0.5000001 x 2- 12 BFFF FF 80 I
----------- -------------------- I
-0.7500001 x 2~ 4 9FFF FF 04

4.1.6 F-xicnded precision floating point data. EFxtendcd floating point data shall bc represented as a 48-bit quantity
consxisting .if a 40-bit 2*s conmplement mantissa and an 8-bit 2's comnplement cxpontmnt. Thec exponent bit% 24 to 31
la) b~etween thc split mantissa hits 0 to 23 and bits 32 to 47. flc most significant hit of thc mantissa is the sign bit 0.
and die least significant bit of the mantissa is bit 47.

237

MIL-SID-1750A (USAF)
2 July 1980

I F Mantissa FIMantissa
jSJ MS FExpotienti Is

0 1 23 24 31 32 47

Somse CX amples of the mac hip ic recsen tation of 48-h it ex tended floating point mini hers, are -hown in thble I V.

TlA B!F IV. 48-hit esxtended floating VOint num1ihers

I j Hexadecimal Notation
--I

FDecimal Nuinbei, Mantissa (MS) Exp Mantissa 'IS)

------------- ------------------ ------- -------------------I
0.5 x 2 127 I400000 7F I 0000

-- - - - -- - - - -- - - - - - - -------- I -----------------I
F0.5 x2 0400000 I 00 I 0000
------------- ------------------ ------- -------------------I
I0.5 x 2-1 I400000 FF 0000

- --- - - - --1 2 -- - - - -- - - - -- - - - - - - - - - - -
F0.5 x 2- 12 400000 I 80 F 0000
------------- ------------------ ------- -------------------I
I-1.0 x 2 12 800000 7F 0000
------------- ------------------ ------- -------------------I
F-1.0 x 2 0 I800000 I 00 I 0000
F------------ -------------- ------- -------------------F
F-1.0 x 2- F 800000 F I 0000
F------------ ------------------ ------- -------------------I
-1.0 x 2-128 F800000 I 80 F 0000
------------- ------------------ ------- ------------------- I
F0.0 x 2 0 F000000 I 00 I 0000
F--------- --------------- ------- ------------------- t
F-0.75 x 2 - FAOOOOO I FF I 0000F

Ior both floating point and extended floating point numbers, an overflow is defined as an exponent overflow and an
underfiow is defined as ats expnnent underflow.

4.1.7 1Flooting point operands. All1 operands for floating point instructions must bc normali/ed or a floating point
/ero. A floating point overflow shall be defined as exponent o~ crfow if the exponent is greater than 7F 16. 'Ihe
results (4 an oper;oion which causes at floating point ovserflow shall be tic largest positi\e nlumber if the sign of the
reCsul1ting mantissa was . siti~ e. or shaill be the smallest negative numbher lI'the Sign of the resltilng mantissa was
negative. Linderfiow shall he deflned as exponent ujnderluiw if the exponent is less than 801l,- ble results of an
operation which cauise,, a floinig point uniderfiowk shall be floating point iemo. Separate interruipts aire set for
overflow and iinderflow. Onlk the floating point instructions shall set the underlo% niternipt.

4.1.8 '1runcaition of floating pimlt resullt . All floating point results shall be truncated tow~ird negative infinity.

4.1.9 Reults of di~ision. lie -igo of anN non -/emo reinaititler is the same a, the div idend Iir all division
iost ruct Ions: the rcmiii nlcr i , oiil I accessibIle(for si ngle ileL ISbn1 Ilel d1 11 ides %kithl 16 hit di% idenik and for single
p)recisionintegerdis iles fli 32 latdi~dends.

0

238

r-ii-STD-1750A (USAF)
2 July 1980

fop:ode) 41,Il ItII o I II. I II con" I,,[of 11 l oyt "1) i tih tI It hi I t (II Ie tn1\1 jictionl.

4.2.1 Ret tsk-cr-t-rcgpw, L~r ha-mi I lhe i t-o-rcam'te Iminat is a I 6-hit Intstructiont corimstang of an 8-hit
opu ide and tAo-hit gctieraI regisio (6 R) fields that t~ picill ,Iccily aniy of 16 general registeis. lIiaddjtion, these
liIls Inay contain a shift ctount, condition code, opcode extension, hit numnber, or the operand foi- immediate short

MSB L SB

I Opcode I GRI I GR2 I

0 7 8 11 12 15

4.2.1 Inatction counter relatise formiat. The Insiruetion Counter (IC) Relative F;ormat is a 16-hit instruction
consistinig of an 8-bit opcode and an 8-bint displacement hield.

MSB LSB

I Opcode I Displacement I

0 7 8 15

4.2.3 Base relative format. Thle base relative instruction format is a 16-bit instruction consisting of a (-bit opcode,
a 2-bit base register field and an 8-bit displacement field. The base register (BR) field allows the designation of one
of four different registers.

MSB L SB

I Opcode I BR I Displacement II

o 5 6 7 8 15

BIR = 0 implies general register 12

BR =I implies general register 13

BR =2 implies general register 14

BIR = 3 implies general register 15

4.2.4 Base relative indexed format. The base relative indexed instruction format is a 16-hit instruction consisting
of a b-bit opcode. a 2-bit base register field, a 4-bit opcode extension and a 4-bit index register field. 'llie base
register (BR) field allows the designation of one of four different base registers and the index register (RX)
field allows the designation of one of fifteen different index registers.

7

239

MIL S[U--1150A (USAF)

2 July 1980

I opcode (31131 Op.Fx. RK

0 5 b 7 8 11 12 15

B R 0l imp)lies gePne ara I r e yi s t e- 12

BR =I irypi ies gene ralI registor 13

8R 2 imp) ies generalI register 14

FiR 3 implies general register 15

RX =0 imp', tes no indexing

4.2.5 Long iistiuction foilMlt. [he I on,, Instruction IFormat is a 32-hit instruICtion consisting ofin h-hit olkcode. a
4-bit general register field. ai 4-hit index register field and a 16-bit address field.

MSI3 I SB

IOpcode IGRI RX I 16-Bit Address Field

0 7 8 11 12 15 16 31

Typically, GR1 is one of the 10 gencral registers on which the instructlon is performing the operation. RX is oneC of
tic 15 general registers, being used ais an index register. Ihe 16-bit address field is either a full 16-hit memory
address oi- a 16-hit operand 'if the instruction specifies immediate addressing.

4.2.6 Immedhate on~code extension format. The immediate opcode extension format is a 32-bit instruction
consisting of in 8-bit opcode, at 4-bit general register field, at 4-bit opeode extension and a 16 bit data field.
I picall). -R I is one of the 16, general registers on which the instruction is performing the operation. Op. Va. is an
opcode extension.

MSB LSB

I Opcode I GRI I Op.Ex. I 16-Bit Immediate DataI

0 / 8 It 12 15 16 31

4.3 Addressing modes. Table V specifies the instruction word format, the I)erived Address M1A). and the D)erived
Operand 0()) for eachi addressing mode that shall he implemented. The smallest addressable memory word is 16
bits: hence, the 16-bit address fields allow diiecl addressing of 64K (65.516) words. there is no restriction on the
location of double word operands in memory.

4.3.1 Register direct 00I. An addressing mode in which the instruction specified register (ontains the required

operand. (With the exceptioni of this address niode. 0 A denotes a memory address.)

4.3.2 Memory direct (D . Ani addressing mode in w hich the instrtiction contains the memory address ofthde

operand.______________

4.3.3 %lemors (irect-indexed 0I)X . An addressing miode in Whith the mneinors iddi ess of the required operid is
specified h\ (lie sum of the woitent of an index ieczister and the instruiction addres, 11eld. Registeis R 1- R2., RI1

iq he specified for indexing.

240)

MIL-STD-1750A (USAF)
2 July 0380

I .\INI I- V. Nddr ,,,t', .Td insmiulioi word f'toinri

: - 7'44 --- -

C. N 4 - -

-- -- - - -

-, _' 4'_, ,_, N: -N _

. ... 0 '-4'. .0'. .. ' -0

.4 * o . , oCo ,ct, ft, 6 - o C S .

..... . ft - N -- ' 4--- "

, a * i . .

9

2A.

i

MI I -Sl)--I70A (USAF)
2 July 1980

4.34 %1.-mii I ,tII wCIj). Anl addressingl node IIIs lhwlr ilie 11nstructionl SpL0A11Cd IIfCiflOI) ALIddC-' Lo niajir tile
IddicN W~ l le c ~Oire eraiid.

4.3-5 %lei ii'i\ _ iiitci t - hl ork, inde.ing (IN). An addresxiiig mode InI \kh::h Lhe suii it the T-IICIt0 ItSp lIe1d
inlde\ ezss ilu .1i11d Ill(oi ,idrs- ik is ih.' iiltr I (if thle iddreYs 01 tile qird prc ~gsc I
R2 . - liS nix.1 he ';pcil1 fol l ie- Indexing.

4.3.0 linciuierir klgji\ 11. lt cre S1hill hi. tsr i1~d (iril'~I ol iliirdiale I ling~ .iIdresng; ('11' lh,0 ,101~
nldexiiie, '1111 one ss ili dice S 1i11 ~1 het Iod'.'11L ch i l (I i t minedI-L1,1 c ite i kr'1 l i ,,i deinitI ir 1-:1-c 11 I the
specitieindex- register. I(. is icc til md to . tire Liit (it RX i,, added Ill the irymiictii.itc it I!d tIII IIii die

4.3.7 Imii.iiite shooir (N)M..i Niiisstc iniiido l'ii h tile ivqciired (4-hil) operand is cmuuitd a tutu .n (6-
hit) inlstrouit-Lml. heire shul he mi\& miiods, ill Iininciitite Yit iiddrcssim': OItt \%1IIiih intierp)Iti' ile LokItitie Ill tiie
iiiiedijIte tiei 'IS puritte dait]. 'lli a ,,ecoid if sld) initel pr' the Cccflii ittI1MI tttiI CItel~d i, rteg;ili\c. kliii.

4.3.7.1 itniedite short (iiieIISP). I1lw iinicdjiatc operand is treawd as at piisitise initeger betweeii I anld 16.

4.3.7.2 litincdi~ite_ shrt no,_IiiIjiS '. Ihle ill[ledilate operand is treated as a negat ivc Iiiteger heisrcolee n d 16.
Its internal tfim shall he 1 2''S cimnplenieni, ,,ign-csuimndcd 16-hit number.

4.3.8 1Instru ci on counte-r r-elike (I CR). I'his itd-dressing niode is used foi 16 hit branch instruc-tions. l'me
contents ti the ini sirue ii n en trrm tiLS lne (ie.. the addrless of the current Inmst ruction) is added to thle sign
extended X-hit displa11cinCuitI field of the Instructionm. '[he sumlI ploints to the memory address to which conttroul may he
transferred it'a brainch is executed. Ibhis mode alloots addressing wit-hin a memory region of 801, to 71:1, wimrds
relative to the address of the CI i rent instruction.

4.3.9 Base relative (11). An addressing mode in which the content of an Instruction specified base reg. 'sAdded
to tIre 8-hit displacement field ofthe (16-hit) instructionj. Jhe displacement field is taken to he a posil0 - -her
between 0 and 255. [he sumn points to the memory address if the required operand. [his, mode allo% A, ig
within at Memory region of 256 %ords beginning at the address pointed to by the base register.

4.3.10 Base relative-indexed (IIX . [11e SUM of the contenits of a specified index register and a specified base
register IS L1he aiddress of the required operand. Registers RI., R2, ..., RI15 may be specified for indexing.

4.3.11 Sneciol (S . The special addressing node is Used where none of the oither addressing modes ire appi able.

4.4 Registers ,ind suvniort features.

4.4.1 General register . [hle instruction set shall Support a nutinin of 16 registers (RO through Ri 5). Ilie
registers may be used as accumulators, index registers, base registers, temporary operand mernor\ - and stlack pointers
With the following restrictions:

a.Only registers Rl. R2- .,R15 may be used as index registers (RX).

b.Onlst four registers. R 12, R13. R14, and RI15 may be used ats base registers for instructions having the
Hase Relati% e address mode.

c.R 15 is the implicit stack pointer fur the hush and Pop Multiple Instructions (Opeodle 81-t1, and 91F16).

dI.lhe igeneral registers are not Ii the logical memory addressN.space.

e.lIusrtiiS havsing the li.. Rli\ c .ddressim mode iw\e a single accumulator. huei regiSter pair (RO,
RIj I,, [Ile ticLuitium1luti hr ilc sc Ii iid thir,iiiie point irpeutmions. Register R.. is the
,icciinru.ur.iior for sturl c. 'tLour cm~ r -w, ii. -~ titil intlw dun it;,h b isereMan\ oealso usec R 1

242j

MItI - SrID-I 150A (USA f
?July 1980

,Ihi1i I I onc.itc.t iiircc .,djace n I r£.t.' t, isto foirm ,n eflcti,t . 48- hit regi sier.

When reijste Is are c nicatenated, the reg ster speciflied fly the ilstruetion shall reprcsent the most sigii't.cllt word.
lI ie iSistcr set wrips iround, that is. R 15 LoilcatiiitetC5 with R0 for 32 hit opelcation, tos d R 15 Cilc1cate , a, e ih R0
and , I foi 48-hit operations.

4.4.2 S ecial registcrs. '[he instructions shall make Li-c of tie following special rcgisters: instruction co)unter,
Slttls w ol'd. latalt register. interrupt mask, pending interrupt register, and inlitou tpltI iterrupt code iegisters.

4.4.2.1 Instruction counter (IC. A 16-hit register used for program sequencing. It allim s instructions ithin a
r, nge of 65,530 uoids to hc executed, It is external to the general registers. It is savtd in memory %%hen an interrupt
us ser% iced.

4.4.2.2 Stus word (SW). [he instruction set shall reference a 16-bit status word register whose sttte i, defined by
some prior eent occurrence in the computer. lie figure below indicates he format for the SW with the fillowing
paiuagriphs describing the meaning of the Condition Status (CS) field, reserved bits, the Processor SL.itc (PS) field,

and the Address State (AS) field.

I CS I Reserved I PS I AS I

0 3 4 7 8 11 12 1 5

CS Bits: A tour-hit field (bits 0 through 3) of the status word shall be dedicated to instruction results (i.e.,
instruction status bits) and is defined as condition status (CS). its 0, 1, 2, and 3 -,hall be
identified as C, P, Z. and N, respectively, and their meanings are given by the following register
transfer description:

C = (CS)0 = I if rcsult generates a carry from an addition or no borrow from a subtraction

P = (CS), = I if result is greater than (zero)

Z = (CS) 2 z 1 if result is equal to (zero)

N = (CS) 3 = I if result is less than (zero)

RzserN ed Bits: Bits 4 through 7 of the status word shall he reserved.

PS Bits: A four-bit field (bits 8 through 11) of the status word shall be dedicated to the processor state (PS)
code. ihe code value defined by the PS shall he used for the following two functions:

For implementations which include the memory access lock feature of the expanded memory
addressing option (see paragraph 4.5.2.2). PS shall define the memory access key code for all
instructions and operand references to memory. References to memory during the interrupt
rccognition sequence for vector table pointer fetches and linkage/service parameter store/read
references shall not use PS to define the memory access key code, but shall use an implied PS=0
value.

PS shll determine the legal/illegal criteria for privileged instructions. When PS = 0 and a
pri% ileged instruction execution is attempted. the instruction shall be legal and shall be executed
properly as defined. When tS 0 aind a privileged instriction execution is attempted, the

Ii

2 3 _____

MIL-STD-1750A (USAF)
2 July 1980

instuction sh all hc illegal, shall bc ahui-ted, and the pris ulged Instruct ion fati It hit in the faulIt
register (:1 it) shall he set to one.

AS bits: A ftiur-bit field (bits 12 throttgh 15) of the staitus word bhl e dediezecd to the :iddieNss state (AS)
code. F or it p cinew attons which do u t mcid ode e xpaimmdcd it cootry add ics',inIg)pthion III
address state ftiolt shall he generated I'm tny Uperattion 0hich anMpIsTIP to (dii AS to it lon,/ero
value. I 'tr ito p leincott oos % hich inclode i' expantded I Icmti oSadc)1~tpt ion, AS sh ill
define the gt oop (pai r) oi page registetr ses to he used foralsIitti iti Intilt101 m (ope ia ti te vl rces

to metmoty. Rellerences to mtemory duintg the interruIpt IecoPgottion1 SeqcICeR forF WCttIi tattl
pointer fetches antd sern ice parameter load1 references shall tt utse AS to declti the opetauid pilge
register Set, but Shill Use anl impiedW AS =0 value. 1'he liukaige pirattetei swite ieleeces sItali
use the AS field of the new% status word. I *() partial jii plenita ~Itious MIMi inc uwt i less III, i 10
groups of page registcr sets for the expandcIli memory addtess)ing (optiont leec pai.igiaplt 4 5.2.3),
the address state fiault hit in the fattil regist('' 1) shall lbe set to one if any opeiattn ttemnpts
to establish ,It AS value that is not itriplettented.

4.4.2.3 Fault repcister (1-T). 'fie fault register is a 16-hit register used for inidicating machinte error oitiditions. The
logical OR of tile fault register bits is used to generate the mtachinte error interrupt. [11e fauilt i egStc r shall he read
and cleared by an XIO instruction. If a partictilar fault bit is tnot implemented. then die hit shall he set to zert. [he
failt. bits Shall1 lie assigned its specified it tie following:

0 1 2 3 4 5 6 7 8 9 t0 11 12 23 14 15

IMEMORY I PARITY 1 I/0 ISPAREI ILLEGAL IRES.1 BITE
1PROTECT I I I I I I

bebits shall have the following meaning when set to one (1):

Bit 0: CPU Memory Protection Fatult. The CPtU has encountered an access fault, write protect faulft, or
execute protect fault.

Bit 1: DMA Memnory Protection Fault. A DMA device has encountered an access fault or a writeI

flit 2: Memory Parity Fault.

Bit 3: NlO Channel Parity Fault.

Bit 4: DMA Channel P-rity Fault.

flit 5: Illegal 1/O Command Fault. An attempt has been made to executc an urnmplemented or resersed
1/O command.

flit 6: PlO Transniission Fault. Other I/O error checking devices, if used, may be ORed into this bit to
indicate an error.

flit 7: Spare.

Bit 8: Illegal Address Fault. A memory location has beent addressed which is not physically present.

Bit 9: Illegal Instruction Fault. An attemrpt hiks been matde to execute at reserved code.

244

MIL-ST)-l/r0A (USAF)
2 July 1980J

I'SAk 0.

Bit 11: Address State Fault. An attempt has been made to establish an AS value foi an unlimplemcnted
page register set.

Bit 12: Itescrvcd.

Bit 13: Built-in' lest Fault. I lardware built-in test equipment (BII'1) error has been detected.

Bit 14-15: Spare HI IT. 'lhesc bits are for use by dhe designer for future defining (coding, etc.) the BIT
error which is derececd. 'Ibis can be used with Bit 13 to give a more complete error description.

4.4.2.4 Interrupt ma-sk MK). Hic interrupt mask rcgister is software controlled and contains a inask bit fur each
of the system interruIptS. [he interrupt systemn is dcfilncd in paragraph 4.6.

4.4.2.5 l~endniniztterruipt recister (11). Thei pending interrupt request register is software and hardware controlled
and contains the pending interrupts that are attempting to vector the instruction counter. A pending interrupt is set
by a system interrupt signal. The pending interrupt bit that generates the interrupt requcst is cleared by hardware
action during the interrupt processing prior to initiating software at the address defined by the new IC value. The
register may be set, cleared, and iread by the 1/0 instnictionS.

4.4.2.6 Innut/output interrupt code registers (IOIC)(ontional). 'Meh input/output interrupt code registers, if
implemented. are used to indicate which channel generated the input/output interrupt. One register is assigned for
each of the two inlput/Output interrupts. Each register is set by hardware to reflect the address of the highest priority
channel requesting that level of interrupt. The address shall be 00t6 for channel number 0. 01:16 for channel number
15, 7V,, for channel number 127, etc. T[he lOICs shall not be altered once the interrupt sequence has commenced
until they are read by anl 1/0 instruction.

MSB LSB

I Spare I Channel Code I

0 7 8 15

4.4.2.7 Paee rc~isters (ontional). Up to 256 sixteen bit registers for optional expanded memory addressing.

4.4.2.8 Memuory fauilt status register (MFSI{) (optionjal). '[he memory fault status register provides the page
register Selection desio'nators associated with memory faults. I'he page register designators (below) captured by the
MFSRZ are %alid for the memory reference causing the fault.

ILPA I RESERVED 1101 AS

0 3 4 10 11 12 15

LPA: Address of page register within the set.

RESI'RVEI): Must not be used.

10: Instruction/operand page set selector (I1 instruction).

AS: Address of~ selected group.

13

245

MIL-STD-1750A (USAF)
2 July 1980

4.4.3 Stack. The instruction set shall support :1 stack mechanism. [hbe operation of'the stackin jugmchanismi shall
be such that the "Last-in, first-out" concep~t is uwed ('or adding items to the stack and the Stack l'uuiter (SP) iegister
daa "ass contains the memory addrcss where the last itemn is ,tored on the stack. 'lime stack prom ides tfor nested
stilhr01tiaU linkage using register 15. Tlhe stack shall also rcside in a uiser defined memory maii. I \&o i ot ruet ions
shall Use register niumber 15 (R 15) as thle implied system stack pointer Push Multiple rcgisteris. PINI\ (sec page
87), and Pop'\ultipl11C registers, POPM (see page 77). The stack expands linearly toward zeni .is i[cmns arc aidded to

Iw\Ao instructions, Stack IC and Jump to Suibroutine, SJS (see page 68). and (Jnstack iC and Retulm ftim Sulbroutinc,
t16R (see page 69). allow the [programmner to specify any of the 16 general registers as thle stack pointer. I[he menmory
block immediately preceding the stack atca may he protected (hy user using memory protc. RANI), thuLS providing
a mneans of knowing (memory protect interrupt) when the stack limit is exceeded. ']be stack shill he addressed by
the Stack IC arid Jumnp to Su~boine1, Unstuck IC aid KRturn f10111 Subrotine, Push Multiple, and P1op NI oltiple
instructions..

4.4.4 Processor initialization.

4.4.4.1 Processor reset state. 'Fable VI defines the processor reset state:

'lABIT. VI. Prmoessor reset state

Register/Device/Function Condition After Reset

Instruction Counter All zeros
Status Word All zeros
fault Register All zeros
Pending Interrupt Register All zeros
Interrupt Mask Register All zeros
General Registers Indeterminate
Interrupts Disabled
Timers A & B Started and all zerois
Page Registers Group 0 enabled
Page Registers AL Field All zeros
Page Registers W Field Zern
Page Registers E Field Zero
Page Registers PPA field Exact logical to physical1
Memory Protect RAM Disabled and all zeros 1 2

Start Up ROM Enabled1
DMA Enable Disabled
Input Discretes Indeterminate
Trigger Go Indicator Started1
Discrete Outputs All zeros

1If implemented (optional)
2 Main Memory Globally Protected

4.4.4.? !owe tic). 1p 1ioi application of power. the processor shall enter the reset state, the normal power up
discrete shall be set (if implemnented), and cxecutioni shall begin.

I .4.4.5 lniti al fiicrs iopionm4). It'implenmtmed. then two interval imners shall be pros ided ill thle computer and

shall he reterred tm ins I onr A ind linici B,. Kt rib ninem's c.in he loaided. ,tolppovd, ,tamtcd, mud vcid 'Aith the

(017111,111d' desvrm-bed in the \l1) [pr~rmpl (vc lic ?9). ihec tNao tuime sh-ill be 1W-it commumtelm wAlmh Operate as

2461

MIIL-STD-1750A (USAF)
2 July 1980

follo s. Iffecti ly. a one is autonatically added to the Ica .sigificant bit or'the iiincr. Bit fifteen is the least
signficant bit and shall represent the specified incrc'mcnt .alue of that timer, i.e., cither 10 or 100 mnicroseconds. An
intei rpt request i, generated whii a tiner increments iron H TI'. to 0((X)IY. Al'tcr power up, if the timers are not
loaded by software, then an interrupt request is generated after 65,53(Counts. A omple of the 16-hit counting
seqlence (shown in hex) is 0000. M001 ..., 7F1I-', 8000 ..., FIIF. M00 . At system reset or power up, the timers
are initialized in accoidance with paragraph 4.4.4.1. 'lhe timers are halted when a hIeakpoint, BPT (see page 138).
instruction is executed and the console is connected.

4.5 Memory.

4.5.1 Memory addressing. lhe instruction set shall use 16-bit logical addresses to provide for referencing of 65,536
words. When the expanded memrmy option (see paragraph 4.5.2) is not implemented, physical addresses shall equal
logical addresses.

4.5.1.1 Memory addressing arithmetic. Arithmetic performed on memory logical addresses shall be modulo
65,536 such that relerences to the maximum logical address of FIFV 1 6 plus I shall be to logical address 000016.

4.5.1.2 Memory addressing boundary constraint,. There shall be no odd or even memory address boundary
constraints.

4.5.2 Expanded memory addressing (optional). If used, then expanded memory addressing shall be performed via
a memory paging scheme as depicted in figure 1. '[here shall be a maximum of 512 page registers in the page file
(not in logical memory space). 'liese shall functionally be partitioned into 16 groups with 2 sets per group and 16
page registers per set. Within a group, one set shall be designated for instruction references and the other set for
operand references. [he page size shall be 4096 words such that one set of 16 page registers shall be capable of
mapping 65,536 words defined by a 16-bit logical address. The page group shall be selected by the 4-bit Address
State (AS) field of the Status Word (SW). 'Ibe instruction/operand set within the group shall be selected by the
hardware that differentiates between instruction and operand memory references. The 4 most significant bits of any
16-bit logical address shall select the page register within that set. The 8-bit Physical Page Address (PPA) within the
page register shall be concatenated with the 12 least significant bits of the logical address to form a 20-bit physical
address, allowing addressing of 1,048.576 words of physical memory.

4.5.2.1 Group selection. During instruction and operand references to memory, the address state (AS) field of the
status word shall be used to designate the page file group. During an interrupt recognition sequence, the operand set
of group zero shall be used for vector table and pointer.references to memory.

4.5.2.2 Page register word format. Fach page register shall be 16 bits. The figure below indicates the format for
the page register words with the following paragraphs describing the meaning of the access lock (AL) field, the
execute protect (F) bit, the write protect (W) bit, reserved bits, and the Physical Page Address (PPA) field.

I AL I E/Wj Reserved I PPA I

0 3 4 5 7 8 15

Al. Field: The access lock and key feature is optional if expanded memory addressing is implemented. If
the access lock and key feature is not implemented. then the Al. field shall always be zero. If it is
implemented, then a 4-bit field (hits 0 through 3) of each page register shall contain the access
lock (AL) code for the associated page register, which shall be used with the access key codes to
determine access permission. 'Ihe access key codes may be supplied by either the status word or
the)MA channel. For each of the possible 16 values of the Al -code, access shall be permitted
for the reference ac)rding to table VII.
References stipplyin' . i unacceptable access key code shall not modiFy any memory location or
general registers and ,,, access fault shall be generated. An access fault resulting from a CPU
reference attempt shall set fault register bit 0 to cause a machine error interrupt. An access fault

15

247

- .!

MIL-STD-1750A (USAF)
2 July 1980

oa

'=4

C43~

(4 'nOb
.

,-4U L;

W1 0.

166

-4-----4t248

1
(1

(6m MM V

Mll-SID)-IS0A (USAI)
2 July 1980

AL C _._ 6 .pt,_a 01 ehe A!c s Ky. CodeS

0 0
1 0.1
2 0.2
3 0,3
4 0,4
5 0,5
6 0.6
7 0.7
8 0.8
9 0.9
A 0.A
B 0,B
C 0,C
D 0,D
E 0,E
F 0.1,2,3.4,5,6.7,8,9.A,BC,D,EF

resulting fronn a DMA attempt shil set fault rCgmtcr hit I to cause a machne error interrupt.
Note that the access lock and key :odes defined in the above tablc have the following
characteristics"

a.An access lock code of1:1 6 is an "unlocked" lock code and allows any and all access
key codes to be acceptable.

b.An access key code of 0 is a "master" key code and is acceptable to any and all access
,ock codes.

C.Access key codes 1 through !-,,6 are acceptable to only their own "matched" lock code
or the "unlocked" lock code of F16.

dAn access key code of F16 is acceptable to only the "unlocked" lock code of F16.

F Bit: For instruction page register sets only, bit 4 shall be defined as the F bit and shall determine the
acceptable/unacceptable criteria for read references for instruction fetches. When F= 1. any
attempted instruction read referc:nce designating that associated page register shall be terminated
and an execute protect fault .;..all be generated. An execute protect fault shall set fault register bit
0 to cause a machine error interrupt.

W Bit: For operand page registers only. bit 4 shall he defined as the W bit and shall deternine the
acceptable/unacceptable criteria for write references. When W = 1, any attempted write reference
designating that associated page register shall not modify any memory location and a write protect
,fault shall be generated. A write protect fault resulting from a C'U reference attempt shall set
fault register bit 0 to cause a machine error interrupt. A write protect fault resulting from a)MA
reference attempt shall set fault register bit I to cause a machine error interrupt.

Rsercd Bits: filts 5 through 7 (f ail of the page registers shall be reserved and shall always be 0.

17

.4 249)

MIL -Sf1) 1750A (USAF)
2 July 1980

l'PA I wlL \ii ciciti [I hit hed (hli(t S tluioi ,h I if eich uieregister Shall he dcdki ll It) th ltViLi [page
v.krc" VAIlii is used (AT dk-lii: (lit:l. ii phiddrcss x, (ILyi(I~d ill figiiie 1.

Nuviile r- of GroA s ASGroup Cgde

2
0 and I a

0 through 3
8 0 through 7

\k thin lll i al 1ti'il iudiiitu~ii h ic ted(itli i, 01i itilS t he ITIiCided.

I N ' I ~ r~. \1 ~ iiiJ It' used. tliei hit 2 ill ilt, Cditll leaistei '1itill lie sCt Lu, nde(Ic.A 'lclln P: Iiut

eI [or.

4 V, \ it lo hl pole_ it Itiil. If itself. shall he us, described h thle nfu/'i~u lsrl h ins.fr
Ali,: It li, 1 ,i omt ii ltilile lieniuir, rclercnices. e~ich stire: iujcrationi shitll he seit., h dlie irieliury

-4 S S ReIleretiesC1 tiiiiniinpIIIeiuI[d 11ieioilr . \tternite .vss tou phvsiel Iidresses " lol. 1 arc nl mirlk mented
'1h.1l (nie teii lleval 'iduhies Luilt Mid s41,01 cAuIse thle elerceticinig xetiun it)i eniii.ite. \ii illegal] uddicess fault.
s'tU , 1l I iecI~ter Ihit S toi eiisc a imichiink error Interrupt.

4,5.l uL* r OM uiO1Jpj)Lj . If used. tile stairt tip read only menuors (OM) address, i unge sh all he oipgous
sI'al ITii! ii ('1i itddlies 1) iil) tilI iiIfll fl tilo (uS.516. as, reqtiied h v thc ssstoni applicaion When thle stjit ill) ROM
s enalI. i I1/0 or C'l stoiic fintii is. cxckiated "lIMSO Liddress is %t thin the stall ipl R0\1)Nf thdi store is
'iitclnfiteu it() thle milin ineitor Whenl the stirt tip ROM i,, oniahed. if -I reid function hiiisiiuictiiii 01 iperili~d) is
clkscitd fruuiii either 1/0 iii the (P' Ahows iddrcss is ti die stairt kip ROW. then the read shill he triiit lie tuii tlip
ROM1. 'A lii disabled, thle stairt Lip ROMi cannout be aecsed.

47R serd mrnor_fiica!iiunN, ILtOn,01S 2 through 11:16 are rcscrxed, I ocauiiins 2016 thirouiui I[- are used
ll. the li.iid" ire aliud the sciored programnias defined by table VIII.

4.6.1 itcijApts. [heinsmntiu itn set shiall upport an mm immof sixteen (16) irnerruipts s shocs ii Ili Ltble \ I.An
1ierupt requlestinui u incur at any litte: howvlcer. the inteirpt processingiriust %,Alt 1.iul11 thecutarent insti ululnun!s

oipleted. \it exception to this is1 tie MluvC Muftiple Wordf %hich ma% he Interrupted ultici each sigle xsord
triiusthr. I lie ow i all procedure Cor accefptance oft. respoinding to, and processing iilan interrupt shall'he al
illuist td b% thle floiw churt of figure 2.

46I.1, h.fitert actie. I lie interrupt % stein shall hasc the capahufifs to aceept ewtinuml nid iternaf
micituipt,. liutmc2 indicates the relationship betoen the inteimpt signials, the pendting 111cinri' e ie
Ilk An i 1 itIi ia us le Cr, the pl nii ri con to i fi iogic, thle sioft ware control ah fe/accessible Sio9us, dte.idrelti

in it III tII i]lls fietoAccii the ti tern i ft svsten i andi the CPU.

t (. I . ll 'It rt So hlt~icruu. suifta talC shall he aIde to input friim iir utiput toi the l('i ipt qs icie is
the! i iuuli ii T ,itu. 'iii el \ lsii sot ts ie s "C teble li0 iu ll t021 11 (0 111 !I'p[I Ic Aii di t t i te

:I
t

wi it up11,i1 t 1. O 11,11.il t ihuiitlo lii 1 Iip hweuil e, iltilS Wo.e I~ iThelt liiui id iiil

-if lit. ffit,' Ii tI'] l iu ps s~il Iheu iu hi'si 1 i hu' i ii ps.i i

237 j

MIL-SID-1750A (USAF)
2 July 1980

IAIlll VIII. n114cr.ixi del-itions

I Interrupt I Interrupt I
Interrupt Linkage i Service J
Mask Pointer I Pointer I

Interrupt Bit Address I Address I
Number Number (tHex) (Hex)
.----------- I ----------- --------- -----I --------------------------

0 0 20 21 Power Down (cannot be maskedi
or disabled)

I 1 22 23 Machine Error (cannot be
disabled)

2 2 24 25 Spare

3 3 26 27 Floating Point Overflow

4 4 28 29 Fixed Point Overflow

5 5 2A 2B Executive Call (cannot be
masked or disabled)

6 6 2C 2D Floating Point Underflow

7 7 2E 2F Timer A (if implemented)

8 8 30 31 Spare

I"9 9 32 33 Timer B (if implemented)

I,10 10 34 35 Spare

It I11 36 37 Spare

12 12 38 39 Input/Output Level I
(if implemented)

13 13 3A 3B Spare

14 14 3C 30 Input/Output Level 2
III (if implemented)

15 15 3E 3F Spare

Notes: Interrupt number 0 has the highest priority. Priority decreases
with increasing interrupt number.

197

MIL-STD-175CA (USAF)
2 July 1980

U -NTRRI HARDWAR SOrrwARE _

RESPONSE IRESPONSE

IPREQRES.

LbOG~ICALL 1 ETRl

GEN AE IHS
PROIINTE R RUPT

INTERRUPTT

AB~LEDG NO

YES

TERRMP
RE Q UER S T j

AIU-orE 2 I CrrnnY VE'stcm fl a t O

DIALEITRRPOCI

HMt -STD-17bOA (UISAF)
2 July 1980

le In Iii 11 Iliptii/oulpiii: 111"th ill, 11 repertirec.

40.1.3 tnc jp -il doinsjtOtioii. I hie prio ril definitioiisn5 i interi upts .111(thcir required rClibonship to
the inticriUpt inw.i interrupt pointer ,iddesse arciifii'rai III table \'ll. Intvipt D~efinitions. lbc power
d(VAn IinteICrruipt -sh I initilate thiep ICr dOIA-1 s LiC(UnctV idCaMIOt h ntimsed or disahled duing i nrmal operatin
Of tl! COIniputer I he OxCoti'(Al 111ii nt.'. used 'A ith [tic lBranich to l'.xccuti~e insinlction, BIEX. (see page 62) also
Cannot0 he mTi',ked oi disabled. t he imachine eiior Interrupt cannot hie disahled btit Lan be masked during normal
oie aniit of thie c in Pu ter. All othe'r ii te rioists cihe disabled ani d miaskecd. If a Iloa ting point ovei flow/underflow
m fihxedl point moi trlmki condition occurs, then the instruction generating that condition shall be interrupted at its
coi iplet ii i if the inkC Itiip is i mask ed and enabled.

4.6 1.A Inen-pcrirnuctliim Ilwie ctoring mechanismi shall hie as illustrated on figurc 3. For each
ini rri pi thi cc shall i e iwo fxdci mcrm lo caioins ilthle " vectori tahle'': (I1) the first memory location (I .i nkagc

l'iinrer) shall hc defiiwd as thc address oft where to store the currn IQ1 old) state of the computer (i.e., "old inteI rupt
nms", "old stJiius %ord", and "old instructioin cMItimtr"): duld (2) the second inenitry location (Service Pointer) shalt
he defined as the aiddress of the next (new) state of the comnpuiter (i.e., "new interrupt mask", "new status word", aad
"new instruLction counter"). Returning from interrupts may be accomplished by executing (be Load Stats
(I.S I/I -S' 1) inlsiruction with the valueC/address of the I .inkage Pointer for an addres.. field.

interrupt 0-->1 Linkage I --- >1 Old Interrupt
Pointer 0 IMaskI

-- --- ----- ---------------- " th tieo
Service I-- IOld Status I \ Computer

IPointer Oi0 Word I > status at
------- I --------------- I /tetieo

Interrupt 1-->1 Linkage I I I Old Instruc. / interrupt
IPointer 1II CounterI/

------------- ------------------/
IService I I
IPointer I
----------- I

-->I New Interrupt

IMask

Interrupt 15->1 Linkage I I New Status I \Computer
IPointer 151 1 Word > status to

----------- -------------- I start service
IService I INew Instruc. I / routine

I Pointer 151 CounterI/

FIGURE 3. Interrupt vectoring system

4.7 lyriot/ouitut. In conjunction with the spare command codes. the 1/0 intempts, and the 1/0 interrupt code
registers, the 1/0 instructions provide at framework within which the user can implement his system interfaces. 'The
particulars of the system interfaces outside of this framework (such as dedicated memory locations, channel register
definition,, ci-imand code assignments/definitions multtiple channel priorities. page register access, etc.) are not
inc~luded in this standard.

21

253

MIL-SID-1750A (USAF)

2 July 1980

4.7.1 jnu. The input instructions transfer data from an external I/O des ice or an intcra;Il ,-pCLIal regiter to a
CPU general register. 'llhis command is used to read data from peripher.il devices, timers. status word, idtlIt icgister.
discretes. interrupt mask, etc. A full description of the input instructions , given in die instrlctl(in rcpe toirC.

4.7.2 OutnUt. The output instructions transfcr data from a CPU general register to an extcrnlal I/O des.ice or
special register. 'This command is used to write data to peripheral devices, discrctes, start and stup tmjers, enable and
disable interrupts and I)MA. set and clear interrupt requests, masks and pending interrupt bits, etc. A full
description of the output instructions is given in the instruction repertoire.

4.7.3 Input/tnpu commands. Input/output commands arc classified as mandatory. optional, resersed, or spare.
Mandatory 1/O commands must he implemented as delicfd. Optional I/O commands must he implemented as
defined, if implemented. Resered 1/O commands must not be implemented. Spare 1/0 commands may be
implemented as required bv the application. Attempted execution)f an unimplemented optional or spare I, 0
command or a reserved 1/O command shall cause the illegal 1/O command fault to be set in the fault registei (I)
causing a machine error interrupt. Input/output commald words shall be fully decoded. "I'Bi)," in inpul/output
instruction descriptions refer to parameters to be determined by the application system requirements. Within these
classifications, the use of the command is defined in the instruction description.

4.7.4 Input/output command partitioning. The I/O command space shall be divided into 128 channels. Up to
512 commands within each channel group (256 input and 256 output) may be used with each I/O interface,. able
IX lists the 128 1/O channel groups. 't he attempted execution of an unimplemented 1/0 command shall cause hit 5
of the fault register to be set, generate a machine error interrupt, and abort to completion.

4.7.5 I0put/output interrunts (optional). Input/output level 1 and level 2 interrupts are available to the user.
'ither interrupt level or both may be implemented for an interface as defined by die particular application

specification. The internipts shall be used in conjunction with the input/output interrupt code registers to provide
I/0 channel to process communications. Two levels of interrupts allow easy differentiation of normal reporting
from error reporting.

4.7.6)cdicated 1/O memory locations. If dedicated memory locations are used to communicate information to
and/or from an I/O channel, these locations shall be consecutise memory locations starting at an implementation
defined location. LoAcations 4016 through 4F16 are optional for i/O usage.

4.8 Instnictions.

4.8.1 Invalid instructions. Attempted execution of an instruction whose first 16 bits are not defined by this
standard shall cause the invalid instruction bit in the fault register (FT9) to be set generating a machine error
interrupt. All undefined bit patterns in the first 16 bits of an instruction are reserved.

4.8.2 Mnemonic conventions. Each instniction has an associated mnemonic convention. In general, the operation
is one or two letters, e.g., 1, for load, A for add, ST for store.

Floating point operations have a prefix of F, e.g., F. for floating load, FA for floating add.

Double precision operations have a prefix of D, e.g., DI. for double load, DA for double add.

Extended precision floating point operations have a prefix of EF, e.g., EPA for gxtended precision floating point
add.

Register-to-register operations have a suffix of R, e.g., AR for single precision add jegister-to-register, FAR for
floating idd register-to-register.

Indirect memory reference is indicated by a suffix I, e.g.. 1.1 for load indirect.

Immediate addressing. using the address field as an operand, is indicated by a suffix of IM. e.g.. AIM for single

254

MIL-STD- 1750A (USAF)
2 July 1980

rAIIl I IX. .lutl i /oI1111I(iliInci glPUrokms

Input Usngut

0OXX 80XX \
> PlO

03XX 83XX /

04XX 84XX \
> Spare

IFXX 9FXX /

20XX AOXX Processor & Auxiliary Register Control

21XX AIXX \
> Reserved

2FXX AFXX /

30XX BOXX \
) Spare

3FXX BFXX /

40XX COXX Processor & Auxiliary Register Control

41XX ClXX \
> Reserved

4FXX CFXX /

50XX DOXX Memory Protect RAM

51XX DIXX \
> Memory Address Extension

52XX D2XX / (page register commands)

53XX D3XX \
> Spare

7FXX FFXX /

precision add immediate.
Use of indexing is specified in assembly language by the occurrence of the operational field after the address field.

e.g.. FA A2,A.PHA,A5: floating add to register A2 from memory location ALPHA indexed by register AS.

4.8.3 Instruction matrix. Tahle X contains the order type matrix which relates each instruction operation code to
an assigned symbol. *ihe numbers shown across the top of the matrix are hexadecimal numbers which represent the
higher order four bits of the operation code, and the hexadecimal numbers along the left side represent the lower
order four hits of the operation code. Table XI contains the order types and assigned mnemonics for the extended
Operation Code instnictions.

4.8.4 Instruction set notation. The text and register transfer descriptions are intended to complement each other.
Ambiguities or omissions in one are resolved by the other. The following definitions and special symbols are
associated with the instruction descriptions.

23

255

Mu -SD-1750A (USAF)
2 July 11093

RU. R1,.. R15 Mhe 16, 16-bit gencial registers

1C lnstructuon Counter

SW Status Word

CS C011dition Status. .1 4 bit qian iny rb.1 ji ." set acco rd i ng to the lvsi sii t> xe.liis

Ip P 1inkagc Pointer

SP Suack Pouinter-, R1 IS r the Push anrd Pop MuIL[tiple nilstructions

SVP Service Pointer

MIK Interrupt Mask Register

P1 Pendin. Interrupt Register

RA. RB An unspecified general register

R Register D~irect

D). DX Memory D)irect, Memory Direct-indexed

I. IX Memory Indirect, Memory Indirect with Pre- Indexing

Im, [MX Immediate Long, Immediate Lo~ng with Indexing

ISP. [SN Immediate Short with Positive Operand, Immediate Short with Negative Operand

ICR IC-Relative

B, DX Base Relative. Base Relative with Indexing

S Special

Data Quantities

MISH, ISlH Most Significant Hialf. F east Significant lialf

MSII. I SB Most Significant Blit, Least Significant [Bit

S.P. D).P., Ft. P., E.F.P.
Abbreviation for "Single P'recision." "D~ouble Precision," "floating Point, and "I-~xtended
floatiiig P~oint' operations, respectively.

MO Ho'inng Point D~erived Operand mantissa (fractional part): 1)((tP) D)Oo 2103 47)
(Ii. .

MI -SID 1750A (USAF)
2 July 19130

4) l 'h~ " ',H ' S hio)" ,H1'I'I 'I 2 ,,'iyk,c.' t " i *. .d llI chi I~ I',I Ck . un)[cnt) I)4 1

I!,' I pvn! t:.I I. t I I II:l I' 41.t ,i (f;,k tlit ,l I pim). ,kA. RA l)) ,I (I 1 1). (RARA -4 1) 2 1(RA +
j :' (I 1 1 It

I A I oa ttng I)(,s I Its t "s conlplemn It agI;i, ,C IALt I I tlitilaitor t li tAi ,t: Is (cxponent):

iRA RA 4 1).. 11

RQ, NIP. N)i. o enrni. i,,-d fIr rc ister !evel nimnlL'r de',,.rpton clarification. lhese registers are not part of
thc gencrI iogistcr ile.

N.I 01. ¢Ollcous

(M L'otents, ol Register X

(. X - I) (. cius Oritotc5 cxana(ed Registers X and X + I

[\1 -ontcnts of'inclincry address X

IX X -1 lj Contcnts of cquentia} memory locations X and X 4 1

O(vM Mantissa (fi-artional part) oei flow

F.xIt Indicates tcrmination o present register transfer opcration (except the setting of the CS bits)

hA t)eriked Address

1)0 I)erived Operand

N. M. n An integer number

;)SPI, I)isplacement

Xn If X is a CP4 U register or a data quantity (see above). then i specifies a bit position in X. IfX is
not a CPU register or a dal, quantity, then the number X is to the base n. If X is a number and
n -- 16. then X is a 2s complement hexadecimal number.

X1 IfX iS ,t CPUI register or a memory address, then i specifies the state of X. I'his notation is used in
the register transfer descriptions I(, rt fcr to the Contents of a CPU register or a memory address at
different times (statcs) of the execution of the instruction. If X is not a CPU register or a memory
address, then the number X is raised to the ith power.

Unilateral transf, r designator

Bilateral transfer designator

Comparison I)csignator

x Indicates a "don't care" bit when used in a binary number

25

257

.5__ _ __ _ __ I

MIL-STD-1750A (USAF)
2 July 1980

> Greater than

Le.ss than

- Eq~uals

> Greater than or equal

< Less thain or equal

Logical ANI1)

v Logical OR

G Fxclusive OR

Logical*NOTI

II Ahsolutc value

258

MIL-SID-1750A (USAF)

2 July 1980

"IA I-. X. Opcrl.ioi todc matrix

* : - :- -. . .

ti *l'C 'V : . . . 0. . ''. .. l .0:0 ':
a. ,. ,' ,' ,. C ,.. C, 7

5,... . ., '. '........

CC'~~ ~ 7a' '7't'7' '-u C---C ----C -

--.- 7-7-7-7--- -------- ,

a - - - -- - 7-oa77--7--a -7-7-

27

259

__,, ,_,, , , , , , , , , , ,___

MIL-SID-1760A (USAF)
2 July 1980

IMBLE XI. Lxtndcd operation codes

. .. .'_ _ - . . .-- ;

':: :g : :# :

- 7- - - ---. .:

- * an- 'a C '- ''C' '- :

7--77: Z"0"

: -.-- --7- -7 -

o U*- '.- ' ' :'-'

:i , , : :: ,

* * *, 3 6
:
0 ::' -

o _, ,, , S. .

* 'a 'a + a ~ , 'a .2[:

, * ,, = , 0 .. - C

* 0. 'S '0 .. ''S " C '*

* ' _ -. ,, ' 0' ' -

28,
260

A'..+C C' 'C'I-.- -.
. , -- , * *" :' C '" +' '' +++_l] + '*i

Mi--SID-1750A (USAF)

2 July 1Ut80

5 I)l" .\l1 1) klQIJIRIIMINIS

5.1 I CClutC~flJlt/!!L l)U.

ADOR MODE MNEMONIC IORMAT/OPCODE

8 4 4 16
IM XIO RA,CMD
IMX XIO RA,CMDRX 1 48 I RA I RX I I CMD I

I)ISCRIPI ON Ihe Input/output instruction traiisfers data)etween an extvrnal/internal device and the register
RA. lile l)rivcd Operand,)O. specifics the operation to be)citolrmed or the (evice to be
addressed. tMe immediate operand field may be viewed as an operation code extension field.
Note that if indexing is specified, then the input/output operation or device address is fonned by
summing the contents of the register RX and the immediate field. This is a privileged instruction.

The mandatory and optional input/output immediate command fields are listed below.

Mandator XIO Command Fields and Mnemonics

OYXX PO Programmed Output: 'Ibis command outputs 16 bits of data from RA to a programmed 1/0 port.
Y may be from 0 through 3.

2000 SMK Set Interrupt Mask: This command Outputs the 16-bit contents of the register RA to the interrupt
mask register. A "I" in the corresponding bit position allows the interrupt to occur and a "0"
prevents the interrupt from occurring except for those interrupts that are defined such that they
cannot be masked.

2001 ClI R Clear interrupt Request: All internipts are cleared (i.e.. the pending interrupt register is cleared
to all zeros) and the contents of the fault register are reset to zero.

2002 ENII. Fnable Interrupts: This command enables all interrupts which are not masked out. "lhe enable
operation takes place after execution of the next instruction.

2003 DSBI. 1)isable Internipts: This command disables all interrupts (except those that are defined such that
they cannot be disabled) at the beginning of the execution of the l)SBI. instruction.

2004 RPI Reset Pending Interrupt: lhc individual interrupt bit to be reset shall be designated in register
RA as a right justified four bit code. (016 represents interrupt number 0, F16 represents interrupt
number 15). If interrupt 116 is to be cleared, then the contents of the fault register shall also be set
to zero.

2005 SPI Set Pending Interrupt Register: This command outputs the 16-bit contents of RA to the pending
interrupt register. If there is a one in the corresponding bit position of the interrupt mask (same
bit set in both the PI and the MK). and the interrupts are enabled, then an interrupt shall occur
after execution of the next instruction. If P15 is set to 1, then N is assumed to be 0 (see paragraph
5.30).

200F WSW Write Status Word: ihis command transfers the contents of RA to the status word.

8YXX PI Programmed Input: This command inputs 16 bits of data into RA from the programmed I/O

29 XIO

261

- -I.. .I
'

... . I "L -
'

.. ""' -: ii... .I" -

MIL--SID-1750A (USAF)
2 July 1980

port. Y may be from 0 through 3.

AOOO RMK Read Interrupt Mask; 'llc current interrupt mask is transfered into register RA. lhe interrupt
mask is not altered.

A004 RPIR Read Pending Interrupt Register: Ibis command transfers the contents of the pending interrupt
register into RA. "Ihe pending interrupt register is not altered.

A001 RSW Read Status Word: 'Ibis command transfers the 16-bit status word into register RA. [he status
word remains unchanged.

A00F RCFR Read and Clear Fault Register: [his command inputs the 16-bit fault register to register R \.
lhe contents of the fault register arc reset to zero. Bit I in the pending interrupt register is reset to
zero.

Optional XIO Command 1ild and Mnemonics

2008 01) Output Discretes: This command outputs the 16-bit contents of the register RA to the discrete
Output buffer. A "1" indicates an "on" condition and a "0" indicates an "olf- condition.

200A RNS Reset Normal Power Up Discrete: I his command resets the normal power up di,ercte bit.

4000 CO Console Output: The 16-bit contents (2 b)tes) of register RA are output to the console. The eight
most significant hits (byte) are sent first. If no console is present, then this command is treated as
a NOP (see page 137).

4001 CJ.C Clear Console: This command clears the console interface.

4003 MPEN Memory Protect Enable: Ibis command allows the memory protect RAM to control memory
protection.

4004 ESUR Enable Start Up ROM: This command enables the start tip ROM (i.e., the ROM overlays main
memory).

4005 DSUR Disable Start Up ROM: This command disables the start up ROM.

4006 DMAE Direct Memory Access Enable: 'Ibis command enables direct memory access (DMA).

4007 I)MAi) Direct Memory Access Disable: This command disables)MA.

4008 TAS Timer A, Start: 'Ibis command starts timer A from its current state. The timer is incremented
every 10 microseconds.

4009 TAH Timer A, HIalt: 'Ibis command halts timer - .t , .nt state.

400A OTA Output Timer A: 'Ihe contents of regist.t ,A are loaded (i.e., jam transfered) into timer A and
tie timer automatically starts operation by incrementing from the loaded timer in steps often
microseconds. Ifit fifteen is the least significant bit and shall represent ten microseconds.

40011 GO 1) igger Go Indicator: 'Ibis command restarts a counter which is conmected to a discretc output.
Ihe period of time frotn restart to (inic-tit shall be determined by the system
requirement,. When the (o timer is ,,tited, the discrete output lhlil go high and remain high for

XIO 30

262

MIL-STD-1750A (USAF)
2 July 1980

'111I) null Iisecond,, at ', h ich li I e the oil tl(It h, I go low unles ano the r GO is executed. Ile Go
discrete output signal may be uied ias a ,,oltwre 'llUlt indicator.

400C TBS limer B, Start: I his command starts timer 1 from its current state. The timer is incremented

every 100 microseconds.

4001) VBI-I Timer B, Halt: 'Ibis command halts timer II at its current state.

400E 01"I Output Timer I: The contents of register RA are loaded (i.e.. jam transfered) into timer II and
the timer automatically starts operation by incrementing from the loaded timer in steps of one
hundred microseconds. Bit fifteen is the least, significant bit and shall represent one hundred
microseconds.

50XX IMP L.oad Memory Protect RAM (5000 + RAM address): Ibis command outputs the 16-bit contents
of register RA to the memory protect RAM. A "1" in a bit provides write protection and a "0" in
a bit permits writing to the corresponding 1024 word memory block. Ibe RAM word MSIB (bit 0)
represents the lowest number block and the RAM word LSB (bit 15) represents the highest block
(i.e., bit 0 represents locations 0 through 1023 and bit 15 represents locations 15360 through 16383
for word 7cro). Each word represents consecutive 16K blocks of memory. The RAM words o f 0
through 63 apply to processor write protect and words 64 through 127 apply to DMA write
protect.

SIXY WIPR Write Instruction Page Register: This command transfers the contents of register RA to page
register Y of the instruction set group X.

52XY WOPR Write Operand Page Register: This command transfers the contents of register RA to page
register Y of the operand set of group X.

A001 RICI Read Input/Output Interrupt Code, Level 1: This command inputs the contents of the level 1
IOIC register into register RA. 'The channel number is right justified.

A002 RIC2 Read Input/Output Interrupt Code, Level 2: 'Ibis command inputs the contents of the level 2
IOIC register into register RA. The channel number is right justified.

A008 RDOR Read Discrete Output Register: This command inputs the 16-bit discrete output buffer into
register RA.

A009 RDI Read Discrete Input: This command inputs the 16-bit discrete input word into register RA. A
"1" indicates an "on" condition and a "0" indicates an "off" condition.

AOOB TPIO Test Programmed Output: This command inputs the 16-bit contents of the programmed output
buffer into register RA. This command may be used to test the PIO channel by means of a wrap
around test.

AOOD RMFS Read Memory Fault Status: This command transfers the 16-bit contents of the memory fault
status register to RA. The fields within the memory fault status register shall delineate memory
related fault types and shall provide the page register designators associated with the designated
fault.

C000 Cl Console Input: This command inputs the 16-bits (2 bytes) from the console into register RA.
The eight most significant bits of RA shall represent the first byte.

31 XIO

263

MIL-STD-1750A (USAF)

2 July 1980

COOlI RCS Read Console Status: 'Ibis command inputs the console interface status into registcr RA\ [be
status is right justilfied.

COOA IA Input 'Iimcr A: '[his command inputs the 16-bit contents of tinier A into register R A. Bit fifteen
is the least significant bit and represents a time incremvent of ten microseconds.

COOE lIB Input Timer BI: 'Ibis command inputs the 16-hit contents of timer B into register I{A. Bit fifteen
is the least significant hit and represents a time increment of one hun~dred microseconds.

DOXX RMP Read Memory Protect RAM (WOO0 f- RAM address): 'Ibis command inputs the appropriate
memory protect word into register RA. A "I " in a bit provides write p~rotection and a "0" in a bit
permits writing to the corresponditig 1024 word memory block. The RAM word MISI (bit 0)
represents the lowest number block and the RAM word LSB (hit 15) represents the highest block
(i.e., hit 0 represents locations 0 through 1023 and hit 15 represents locations 15300 thimigh 16383
for word zero). Fach word represents conscutive 16K blocks of niemory. ihe RA \1 Aoids of 0
throtugh 63 apply to processor write protect and words 64 through 127 apply to DNMA write
protect.

l)IXY RIPR Read Instruction Page Register: 'Ibis cornmand transfers the 16-bit contents of the page register
Y of the instruction set of group X to register RA.

l)2XY ROPR Read Operand Page Register: [his command transfer the 16-bit contents of page register Y of
the operand set of group X to register RA.

******** User defined XIO functions (sce table IX).

REG ISTIER TRANSFIER I)FSCR IPTION: Varies dcpending on the command field.

REGISTFRS AFFI'CTFT) Varies depending on the command field.

XIO 32

264

Ml -SID)-1750A (USAF)

2 July 1980

5.2 \ i 'cdU'LlILQ3I/O ~ .

ADDR MODE MNLMONIC FODMA ILPCODL

8 4 4 16

D VIO RA,ADDR

DX VIO RA,ADDR.RX 1 49 1 RA I RX I ! ADDR I

I)lSCR lI'ION: Ihe vectored input/output instruction performs the I/0 opcration as specified by the
input/odtput vector table starting at the derived address, I)A. ,s shown below:

DA CMD

------------- I
DA+1 Vector Select

------------- I
DA+2 Data) one data word for each bit

------------- set in the vector select

The input/output operation or device address is specified by the sum of the CMI) and the
product of the bit number of the bit set in the vector select times the contents of RA. Ihis device

address is then interpreted as specified by the XIO instruction (see paragraph 5.1) with the
exception that I/O data is trausfered to or from I)A + 2 + i rather than RA (where i starts at zero

and is incremented after each transfer). 'Ibis is a privileged instruction.

REGISTER IRANSEER DESCRIPTION:

Step 1. n (-- 0 and i <-- 0;

Step 2. if [DA+tln=l, then I/0 command = [DA] + {n x (RA));

Step 3. if [DA+I]=I, then I/0 data =[DA+2+i];

Step 4. if [DA+I]n=i. then i <-- i+1;

Step 5. n <-- n + I, exit, if n = 16;

Step 6. go to step 2;

REGISTERS AFFECTED: None

33 ViO

265

MIL-STO 1750A (USAF)
2 July 1980

5.3 Sct bit.

ADDR MODE MNEMONIC FORMAI/OPCODE

8 4 4

R SBR N,RB I 51 1 N I RB I

8 4 4 ,16

D SB N,ADDR
DX SB N,ADDR,RX 1 50 1 N I RX I I ADDR I

8 4 4 16

I SBI N.ADDR I 52 I N I RXI I ADOR I
IX SBI N,ADDR,RX

IISCRIF'ION: Bit number N of thc Derived Operand, DO, is set to one. The MSB is designated bit number 7cro
and th c SB is dcsignated bit number fifteen.

REGISTER TRANSFER DESCRIPTION:

DOW <-- 1;

REGISTERS AFFECTED: RB

SIIR,SB.SII 4

266

MIL-STD-1750A (USAF)
2 July 1980

5.4 Reset bilt.

ADDR MODE MNEMONIC rORMAT/OPCODE

8 4 4

R RBR N.R8 1 54 1 N I RBI

8 4 4 16
0 RB N,ADDR-- - - - - - - - - - - - - - - - - - -

DX RB N,ADDR,RX 1 53 1 N IRX II ADDR I

8 4 4 16

I RBI N,ADDR I 55 I N I RX II ADOR I
IX RBI N.ADDR.RX-- - - - - - - - - - - - - - - - - - -

DFSCRIIION: Bit number N of the Derived Operand, DO, is set to zero. The MSB is designated bit number zero
and the LSII is designated bit number fifteen.

REGISTER TRANSFER DESCRfJITIN

DOWj <-- 0;

REGISTERS AFFECTED: RB

35 RIIRRBf.RBI

267

MIL-STD-1750A (USAF)
2 July 1980

5.5 Te'st hi(.

ADDR MODE MNE1~MNI FORMAT/OPCODE

8 4 4

R TBR N,RB I 57 IN RB

8 4 4 16
D TB N,ADOR-- - - - - - - - - - - - - - - - - - -

DX TB N.ADDR.RX 1 56 1 N I RX I I ADDR I

8 4 4 16

I 181 NADDR 1 58 1 N IRX II ADDR I
Ix TBI N,ADDR,RX-- - - - - - - - - - - - - - - - - - -

DE-'SCRIPTON: Bit number N (0 < N < 15) of the I)erived Operand. 1)0, is tested. Then the Condition Status.
CS, is set to indicate non-zero if bit number N of the I) contains a one. Otherwise CS is set to
indicate zero. 'Ihe MSB of thc DO is designated bit number zero and the [511 of the 1)0 is
designated bit number fifteen.

REGISTER TRANSFER DESCRIPTION:

(CS) <-- 0010 if DON = 0 and 0 N 15;
(CS) <-- 0001 if DON c 1 and N =0;

(CSI <-- 0100 if 00% = I and I <, NHS 15;

REGISTERS AFFECTED: CS

TIIRj, LIBI 16

268

MIL-SID-1750A (USAF)

2 July 1980

5.6 t .iad sct hit.

ADQR MF. MNEMONIC i OiMA L/QICODF.

8 4 4 16

D TS8 N,ADDR ------------------------------------

DX TSB N,ADDR,RX I 59 I N I RX I j ADDR I

I)|'SCRI PION; Bit nurnber N (0 < N < 15) of the Derived Operand, DO, is tested and set to one. 'be CS is set

according to the test.

Note: External memory accesses shall be inhibited until this instruction is complete.

REGISTER TRANSFER DESCRIPTION:

(CS) <-- 0010 and (DON) <-- 1 if DON = 0 and 0 N _< 15;
(CS) <-- 0001 if (DON) = 1 and N = 0;
(CS) <-- 0100 if (DON) = 1 and 1 <. N 5 15:

REGISTERS AFFECTED: CS

37 "FSB

269

-. WAW

MIL-SID-1760A (USAF)

2 July 1980

57 Set ariablg bit in reeister.

ADDR MODE MNEMONICRATPC.

8 4 4

SVBR RARB I 5A I RA I RB I

--- --------------------

I).SCRIP'I'ON: Bit number N (0 < N (15) of the register RB is set to one where the least signific int four bits of

the contents of register RA is N. Iits (RA) 0 1 have no effect on the operation. If RA RB, then

the count is determived first and then the appropriate bit is changed.

REGISTER TRANSFER DESCRIPTION:

(RB)N <-- 1 where N = (RA)12-15 ;

REGISTERS AEECTED: RB

SVIBR 38

270

MIL-STD-1750A (USAF)
2 July 1980

5.8 RLc',t vahac bit in rister.

ADDR MOUL MNEMONIC ORMAT/OPCODE

8 4 4

R RVBR RARB I C I RA I RB I I

I)IWSCRJIPTION: Bit number N (0 N < 15)of register RB is set to zero where the least significant four bitsof the
contents of rcgister RA is N. Bits (RA)(I have no effect on the operation. If RA = RB. then the
count is determined first and then the appropriate bit is changed.

REGISTER TRANSFER DESCRIPTION:

(RB)w <-- 0 where N = (RA) 121 s;

REGISTERS AFFECTED: RB

4

39 RVIlR

271

MIL-STD-1750A (USAF)
2 July 1980

5.9 lest variable bit in repistcr.

ALDR MODE MNEMONIC A f______0 Pc__O

8 4 4
------------.-------.

R TVBR RA,RB 5E I RA I RB I

I)FSCR IIO111N: Bit nmber N (0 < N < 1S)of register RB is tested where th lct st,.,icant foin Iit, of the
contents of register RA is N. 'llc C'o dition StttS. (S. is thc.t ',et w, diLatc I1(1-/CfO if hr
number N of registcr RI is a one. Otherwise, CS k set tt indi.,,te ,'co.

REGISIER TRANSFFR DESCRIPTION:

N = (R4)12_15

(CS) <-- 0010 if (RBN) z 0 and 0 < N < 15;
(CS) <-- 0001 If (RBN) = I and N 0;
(CS) <-- 0100 it (RBN) = I and I . N < 15;

REGISTERS AFFECTED: CS

TVIIR 40

272

|.,

MIt -STD-1750A (USAF)

2 July 1980

5 !0 Shift 1,11 loi.

ADDR M'OD[MNEMONIC I ORMAT/OPCODE

8 4 4

R SLL RB,N I 60 IN-! I RB 1 1 < N <j 16

lI.SCRIt'l ION: Ihe contentrsof die Derived Address, D)A (i.e., thc contents of register RB) are shifted left
logically N positions. ['lie shifted result is stored in IW.' [he logical shift left operation is as
follows: teros enter the leaist significant hit position (bit 15) and bits shifted out of thc sign bit
position (bit 0J) are lost. The condition status, CS, is set based on the result in register RB.

Note: N- I = 0 represents a shift of one position.

N- I = 15 represents a shift of sixteen positions.

0 15

EXAMPLE: RB Before Shift I sabct defgI ijki lmnpI

RB After Shift (N=4) ---- ---------

I defgj hijkl lmnpl 00001

REGIER TRANSFER DESCRIPTION4:

(RS) <-- (RB) Shifted left logically by N positions;

(CS) <-- 0010 if (RB) 0;
I CS) <- 001 if (RB) 0;
"CS) <-- 0100 if RB) > 0,

RE'U~1ERj AFFECTED: RB, CS

41 SLIL.

73

MIL-STID-1750A (USAF)
2 July 1980

5.11 Shift r caI.

ADDR MODE MNFMONIC FORMAT/OI(CODE

8 4 4

R " RL RB,N I 61 IN-I (Rf I I < N < 16

IV)[SCR INI lION: The contents of the I)eri~cd A :drcs. I)A (i.e., the content, of'rci ver RI). aft I tcd right
logically N positions. Ihe shiied isstoed in 111. I he zt.l s it rp'ht Id ,111i is Is
Ihllows: icroN enter the sign hit position (hit (1) and hits shi{1I1d Otit he (1V ',11 1 It. ill(hit
position (bit 15) aN 10,t. I.ic L iodition status, (S, is set hascd (ill tIC result I lgltI I R I 1 .

Note: N- I = 0 represents ,1 shift of one position.

N-I = 15 represents a shift of sixteen positions.

0 15

EXAMPLE: RB Before Shift [sabc I defg I hiikf I nnp

RB After Shift (N=4)

I 00001 sabcl defgi hijkl

REGISTER TRANSFER DESCRIPTION:

(RB) <-- (RB) Shifted right logically by N positions;

(CS) <-- 0C10 if (RB) = 0;
(CS) <-- 0001 if (RB) < 0;
(CS) <-- 0100 if (RB) > 0;

REGISTERS AFFECTED: RB, CS

1i

SRI. 2

274

- . -- -- --- - -. -. -.- - ,.,.._

MIL-STD-1750A (USAF)
2 July 1980

5.12 Shift nehi arithmctic.

ADDR MODE MNEM NIC FORMAT/OPCODE

8 4 4

R SRA RBN I 62 IN-I I RB I 1 j N _ 16

I)I'SCRIPI ION: The contcnts of the I)crivcd Address.)A (i.e.. the ,s.- ,nts of register RI), are shifted right
aithinetically N positions. "l'hc shifted resuih is sio. 1 R. 1ic arohnietic right shift operation
is as follows. the sign bit, vhich is not changed, is copied into the next position for each position
shifted and bits shifted out of the least significant bit position (bit 15) are IOSL T[he condition
status, CS. is set based on the result in register RB.

N=.: N-I = 0 represents a shift of one position.

N- I = 15 represents a shift of sixteen positions.

0 15

EXAMPLE: RB Before Shift I sabcl defgl hijkl lmnp I

RB After Shift (N=4)
I sss'sl sabcl defgj hijkl

REGISTER TRANSFER DESCRIPTION:

(RB) <-- (RB) Shifted right arithmetically by N positions;

(CS) <-- 0010 if (RB) = 0:
(CS) <--- 0001 if (RB) < 0
(CS) <-- 0100 if (RB)) 0;

REGISTERS AFFECTED: RB. CS

43 SRA

27%

._. A.

Mit-SfD-1760A (USAF)
2 July 1980

5.13 Shift left cyclic.

ADOR MODE MNEMONIC FORMAT/OPCODE

8 4 4

R SLC RB.N 1 63 IN-I I RB I I < N < 16

1)!SCRIPT1ON: 'Ihe contents of the D)erived Address, D)A (i.e., the contents of register RB), arc shifted left
cy6clically N positions. T~he shifted result is stored in 1l9. The cyclic left shift operation is as
follows: bits shifted out of the sign bit position (bit 0) enter dic leaist significant bit position (bit
15) and, consequently, no bits are lost. [he conditions status, CS. is set based on the result in R B.

Note: N- I = 0 reprcscnts a shift of one position.

N -I =15 represents a shift of sixteen positions.

0 15

EXAMPLE; RB Before Shift I sabcl defgl hijkl lntnpl

RB After Shift (N=4) -------------

I defgj hijkj Imnpl sabcj

REGISTERl TRANSFER DESCRIPTION:

(RB) <-- (RB) Shifted left cyclically by N positions;

(CS) <-- 0010 if (R13) =3;
(CS) (- 0001 if (RB) , 0;
(CS) -- 0100 if (RB) > 0;

RE GI JtERS LFF U I-: RB. CS

SI .C 44

276

MIL-SID-1750A (USAF)
2 July 1980

5. 14 Iiouhlehf ilt lopuiwiI

ADDR LIQ.E MkEMONI OR)IMA/OPCODE

8 4 4

R DSLL RB,N 1 65 IN-i I RB I I N 16

l)ESCRIP[ION: 'l'hc concatenated contents of the Derived Address, DA, and DA + I (ic., the concatenated
conteniLs of 111 and RH + 1). arc shifted left logically N positions. The shifted resuilts arc stored in
RB and RB+ 1. The double left shift logical operation is as follows: zcros enter the least
significant bit position of RB+ 1, bits shifted out of thc sign bit position of RU + 1 enter thc least
significant bit of RBI and bits shifted out of the sign bit position of RB are lost.Thc condition
status, CS, is set based on the result in registers RB and RlI+ 1.

Note: N-i = 0 represents a shift of one position.

N-i = 15 represents a shift of sixteen positions.

EXAMPLE: RB. RB+1 Before Shift

0 RB 15 0 RB+1 16

Islabcl defgl hijkl lmnpl Is2qrsl tuvwl xyzzl zzzzl

RB. RB+1 After Shift (N=4)

0 RO 15 0 RB+1 15

I defgj hijkl lunpjs 2qrsl I tuvwj xyzzl zzzzi 00001

REGISTER TRANSFER DESCRIPTION:

(RB,RB+1) <-- (RB,RB+1) Shifted left logically by N positions:

(CS) <-- 0010 if (RB,RB+1) - 0;
(CS) <-- 0001 if (RB,RB+1) < 0;
(CS) <-- 0100 if (RBRB+1) > 0;

REGISTERS AFETED~L: RB. RB+1. CS

445 I)SLI.

277

MIL-STD-1750A (USAF)
2 July 1980

5,15 D ouble shift right logical.

ADOR MODE MNEMONIC FORM!AT/OPCODE

8 4 4

R DSRL RB.N 1 66 IN-I I RB I 1 < N < 16

lI.SCRiProN: 'Ihe concatenated contenlts of the D~erived Addrss, D)A, and D)A + I (i.c., the concatcnatcd

contents of 111 and RBl+ 1), arc shifted right logically N positions. Ilie shifted results arc stored
in R13 and RB+ 1.1"The double logical right shift operation is as follows: zeros enter the sign bit
position of IN, bits shifted out of the least significant bit position of 111 enter the sign bit position
of RB+ Iand bits shifted out of the lcast significant bit position of RB+ I are lost.,h condition
status, CS. is set based on the reSult in register 1R1 and RRI+ 1.

Note: N- I = 0 reprcsents ashift of one position,

N- I = 15 represents ashift of sixtecn positions.

EXAMPLE: RB. RB+1 Before Shift

0 RB 15 0 RB+I 15

IslabcI defgj hijkl lmnpl Js2qrsj tuvwj xyzzl zzzzI

RB. RB+I After Shift (N=4)

0 R8 15 0 RB+1 15

I0000jsiabcl defgj hijkl I mnpls 2qrsl tuvwl xyzz)

REGISTER TRANSFER OESCRIPTION!

(RB,RB+1) <-- (RB,RB+1) Shifted right logically by N positions;

(CS) <-- 0010 if (RB,RB+1) = 0;
(CS) <-- 0001 if (RB,RB+1) < 0;
(CS) <-- 0100 if (RB.RB+1) > 0;

REGISTERS AFFECTED: RB. RB+1. CS

4DSRL 46

278

1411-STD-1750A (USAF)

2 July 1980

5.16 D ouble ',hitt rt ,idiic.

ADOR MIODE MNEMONIC LORMAF/OPCOOE

8 4 4

R DSRA RB,N 1 67 IN-i I RB I I < N 16

1)1.SCR I P lION: 'The concatcnatcd contents of thc IDcrived Address, DA, and DA + I (i.e., thc concatenated
contents of RB and RI1I+ 1), are shifted right arithmnetically N positions.' the shifted results are
stored in RB and RB + 1.1Thc double right shift arithmetic operation is as follows: Vhc sign bit of
RB, which is not changed, is copied into thc next position for each position shifted, bits shifted
out of thc least significant position of R11 enter the sign bit position of R11 + 1. and bits shifted out
of the least significant bit position of RB+ 1 are lost. Ibe condition status, CS, is set based on the
result in register RB and RB+ 1.

N=: N- I = 0 represents a shift of one position.

N-i = 15 represents a shift of sixteen positions.

EXAMPLE: RB. RB+1 Before Shift

0 RB 16 0 RB+1 15

Islabcl defgj hijkl lmnpl js2qrsj tuvwl xyzzl zzzzl

RB, RB+I After Shift (N-4)

0 RB 15 0 RB+I 16

IsisIsIsIl slabcl defgl hijkl IlmnpI s2qrsg tuvwl xyzzi

REGISTER TRANSFER DESCRIPTION:

(RB,RB+l) <-- (RB,RB+1) Shifted right arithmetically by N positions;

(CS) <-- 0010 if (RB.RB+1) = 0;
(CS) <-- 0001 if (RB.RB+1) < 0;
(CS) <-- 0100 if (RB,RB+1) > 0;

REGISTERS AFFECTED: RB, RB+1, CS

47 DSRA

279 I

MIL-STD-1750A (USAF)
2 July 1980

5.17 IDouble shiVft l cyclic.

ADOR MODE MNEMONIC FORMAI/OPCODE

8 4 4

R DSLC RB,N 1 68 IN-i I RB 1 1 < N < 16

I WSCR I VI ION- Ibeconcatenated contents of the D~erived Address, D)A, and D)A+ I (i.e., the cmicatenated
contens otR H I and RRl± t), atro shifted ieft c L lit ally N posirons." [he siftod resullts ire,,1tored in
R11 and R11 f I. the dotihie left shift cyc lic operation is is,. tnflows: hits shiftecd oni oihe si it hit
position of RBI entecr the least sienificint hit position oi Hit1+ 1, bits si cfted out ci the sign it
position) of RI f I enter the least significanlt b)it p oSi ion iii H It and, consequcntlI im hit% ai cc Ir
I[he condition stattus. CiS, is set hascd on the resuilt in HiB and Hit + 1.

Note: N4 1 0 repi em nisa shift otflne position.

N- I IS repr-esents a shift oif six teen positions.

EXAMPLE: RB, RB*-l Before Shift

0 RB 15 0 RB+l 15

Isiabct delgi hijkl Imnpj Is2qrsl tuvwl xyzzl zzzzl

RB, RB+1 After Shift (N=4)

0 RB 15 0 R8+1 15

Idefgl hijkl lmnpI s2qrsl Ituvwl xyzzl zzzIl slabcl

REGISTER TRANSFER DESCRIPTION:

A (RBRB+1) <-- (RB.flB+t) Shifted left cyclically by N positions;

(CS) <-- 0010 if (RB,RB+l) = 0;
(CS) <-- 0001 if (RB,118+1) < 0;
(CS) <-- 0100 if (RB,RB+1) > 0;

RItGISTERS AFFECTED: RB. RB+t. CS

I)SI C

AD-AlO 577 AERONAUTICAL SYSTEMS DIV WRIGHT-PATTERSON AFB OH F/s 1/3

AFSC STANDARDIZATION CONFERENCE. 1553, 1589. 1750, 1760. ADA. N-ETC(U)

NOV 80 E C GANGH S E SMITH

UNCLASSIFIFn ASO-TR-80-5050-VOL-2 NL

4.5

hhhEEIIIIIIEI-,

,

EohhhEEohhEEEE
IIIIIIumIuuuI
IEEEEEEEIIIIEE
EllllEE~lllEEI
IIIIIIIIIIIIII

MIL-SID-1750A (USAF)

2 July 1980

5.18 ShifL jcit a. Cuklt i! .

ADOR MODE_ MNEMONIC FLOLMAQPCQD.L

8 4 4

R SLR RARB I 6A I RA I RB I I(RB)I .. 16

I)'SCKIVI'ION: The contcnts of register RA are shifted logically N positions, where N is the contents of register
RI. If N is positive ((RIM0)=O). then the shift direction is left, if N is negative (2's complement
notation, (KI1 0)= 1). then the shift direction is right. The condition status. CS. is set based on the
result in RA.

Note: N = 0 represents a shift of 7.cro positions.

If INI > 16. the fixed point overflow occurs, no shifting takes place, and this instruction is treated
as a NOP (see page 137).

The contents of RB remain unchanged, unless RA = RB; in this event the contents are shifted N
positions.

(See "i)escription" of the logical shift instructions, SLL and SRI. (see pages 41 and 42). for the
definition of shift operations.)

REGISTER TRANSFER DESCRIPTION:

PIA <-- 1. exit, if INI > 16:

(RA) (-- (RA) Shifted left logically by (RB) positions,

if 0 < (RB) < 16;

(RA) <-- (RA) Shifted right logically by -(RB) positions.

if 0 > (RB) > -16;

(CS) <-- 0010 if (RA) = 0;

(CS) <-- 0001 if (RA) < 0;

(CS) <-- 0100 if (RA) > 0;

REGISIRS AFFECTED: RA, RB, CS. PT

49 SLR

281

MIL-STD-1750A (USAF)
2 July 1980

5.19 Shift arithineCtic. count in register.

ADDR MODE MNEMONIC 1 ORMA I/OP(9ODE

8 4 4

R SAR RARB I 6B I RA I RB I I(B)I _ 16

IMSCR IP'I'ON: The contents (of register RA arc shifted arithnctically N positions, where N is the contents of
register RI. If N is positive ((R 1o) 0),then the .hift direction is left: if N is n a'gtia e (2's
caomplernent noiation. (R It) - 1), then the shift diaection is right. Ilbe condition StAus. ("- is set
based or, the result in RA.

Note: N = 0 represents a shift afzero positions.

If INI > 16, the fixed point overflow occurs, no shifting takes place, and this instruction is treated
as a NOP (see page 137).

The contents of RB remain unchanged. unless RA = RIM in this event, the contents are shifted N
positions.

(See "Description" of the arithmetic shift instruction SRA (see page 43) for defilition of the right

shift operation. Left shift causes "zeros" to be shifted into low order position of result.)

Fixed point overflow occurs if the sign bit changes during a left shift.

REGISTER TRANSFER DESCRIPTION:

P1 4 <-- 1, exit, if INI > 16;

(RA) <-- (RA) Shifted left arithmetically (RB) positions.

if 16 > (RB) > 0;

(RA) <-- (RA) Shifted right arithmetically -(RB) positions,

if 0 > (RB) > -16;

P1 4 <-- 1, if (RAO) changes during the shift;

(CS) <-- 0010 if (RA) = 0;
(CS) <-- 0001 if (RA) < 0;
(CS) <-- 0100 if (RA) > 0;

REGISTERS AFFECTED: RA. RB, CS, PI

SA R 50

282

MIL-STl-1750A (USAF)
2 July 1980

5.20 Shift cyclic. comut in rgster.

ADDR MOD[MNEMONI-C FORMAT/OPCODE

8 4 4
------------.--------

R SCR RARB I 6C I RA I RB I I(RB)j 16

I)FSCRIIqllON: ll contents of register RA arc shifted cyclically N positions, where N is the contents of register
R. If N is positive ((RI1o)= 0), then the shift direction is left: if N is negative (2's complement
notation, (R BO)= 1), then the shift direction is righL The condition status, CS, is set based on the
result in RA.

N=: N = 0 represents a shift of zero positions.

If INI > 16, the fixed point overflow occurs, no shifting takes place, and this instruction is treated
as a NOP (see page 137).

(See "Description" of the cyclic shift instruction, SLC (see page 44), for definition of shift
operations.)
ibe contents of RB remain unchanged, unless RA = RB in this event, the contents are shifted N

positions.

REGISTER TRANSFER DESCRIPTION:

P14 <-- 1, exit, if INI > 16;

(RA) <-- (RA) Shifted left cyclically by (RB) positions.

if 0 < (RB) , 16;

(RA) <-- (RA) Shifted right cyclically-by -(RB) positions.

if 0 > (RB) . -16;

(CS) <-- 0010 if (RA) z 0:
(CS) <-- 0001 if (RA) (0;
(CS) ,-- 0100 if (RA) > 0;

REGIJEh-a AFFECTED: RA. RB. CS. PI

51 SCR

283

MIL-STD-1750A (USAF)
2 July 1980

5.21 Double shift logical. count in reaister.

ADDR MOME MNEMONIC FORMAI/OPCODE

8 4 4

R DSLR RA,RB I 6D I RA I RB I l(RB)l K 32

Dl-SrRlPTION: The concatenated contents of registers RA and RA + I are shifted logically N positions where
register R B con tainrs the count, N. If the count is positive ((R 0) zO). then the shit direction is
left. If thc coun1t is negative (2'scomiplement notation, (RB 0)= 1). then the shift direchtio is right.
The condition status. CS, is set based on the result in RA and RA + 1.

Note: N = 0 represents a shift of izero positions.

If (NI)> 32, the fixed point overflow occurs,, no shifting occurs, and this instruction is treated as a

NOP (see page 137).

(See "Description" of the double shift logical instructions. I)SRI1. and f)SLI, (see pages 46 and
45), for definition of shift operations.)

The contents of RB remain unchanged, unless RA =RB; in this event, the contents are shifted N
positions.

REGISTER TRANSFER DESCRIPTION:

P'4 <-- 1, exit, if INI > 32;

(RA,RA+1) <-- (RA,PAd') Shifted left logically by (RB) positions

if 32 > (RB) > 0:

(RA,RA+1) <-- (RA,RA+1) Shifted right logically by -(RB) positions

if 0 > (RB) ; -32:

(CS) <-- 0010 if {RA,RA+1) =0;

(CS) <-- 000l if (RA,RA+l) < 0;
(CS) <-- 0100 if (RA,RA+1) > 0:

REGISTERS AFFECTED; RA, 1401, RB, CS, PI

I)SfR 52

284

MIL-STD-1750A (USAF)

2 July 1980

5.22 I oh~h~a~uc, inhI1

ADUR MODf MNLMON IC fOfRMAI /oPCQDE

8 4 4

R DSAR RA.RB I 6E I RA I RB I I(RB)I j 32

IDtSCRIIYII)N: lMe concatenated contents of register RA and RAt are ';hifted arithmetically N positions where
registcr RB contains de count. N. If the count is positive ((RB0) - 0), then the shift direction is
left. If the count is negative (Tscomplement notation, (R110)= 1), Lhen the shift direction is right-
'llie condition status, CS. is set based on t11 result in RA and RA + 1.

Note: N = 0 represents a shift of zero positions.

If INI) 32, the fixed point overflow occurs, no shifting occurs, and this instruction is treated as a
NOP (see page 137).

The contents of R II rcmain unchanged, unless RA = RB; in this event, the contents arc shifted N
positions.

(See "l)escription" of the double shift arithmetic instruction. DSRA (see page 47). for the
definition of the right shift operation. Left shift causes "zeros" to be shifted into low order
position of result.)

Fixed point overflow occurs if the sign bit is changed during a left shift.

REGISTER TRANSFER DESCRIPTION:

P14 <-- I- eXit, if [NJ) 32:

(RARA+1) <-- (RA.RA+I) Shifted left arithmetically (RB) positions,

if 32 2 (RB) > 0:

(RA.RA+t) <-- (RA.RA+I) Shifted right arithmetically -(RB) positions.

if 0 > (RB) _ -32;

P14 <-- 1, if (RAO) changes during the shift;

(CS) <-- 0010 if (RA.RA+1) = 0;
(CS) <-- 0001 if (RA,RA+I) < 0;
(CS) <-- 0100 if IRA.RA+I)) 0;

REGISTERS AFFECTED: RA. RA+1. RB. CS, PI

I
53 I)SAR

MIL-STD-1750A (USAF)
2 July 1980

5.23 Double shift cyclic. count in register.

ADDR MODE MNEMONIC FORMAT/OPCODE

8 4 4

R DSCR RA,RB I 6F I RA I RB I I(RB)I 32

DFSCRIPTION: The concatenated contents of registers RA and RA + 1 arc shifted cyclically N position-, where
register RB contains the count, N. If the count is positive ((RI11)) = 0). the shift direction is left. If
the count is negative (2's complement notation, (RBo)= I), the shift direction is right. Ile
condition status, CS, is set based on tie result in RA and RA + 1.

No=: N = 0 represents a shift of zero positions.

If INI > 32, the fixed point overflow occurs, no shifting occurs, and this instruction is treated as a
NOP (see r'age 137).

(See "Description" of the double shift cyclic instruction, DSLC (see page 48). for the definition of
shift operations.)

The contents of'RB remain unchanged, unless RA = RB: in this event, the contents arc shifted N

positions.

REGISTER TRANSFIER DESCRIPTION:

P14 <-- 1, exit, if INI > 32;

(RA,RA+I) <-- (RA,RA+I) Shifted left cyclically by (RB) positions

if 32 2 (RB) > 0;

(RA.RA+I) <-- (RA,RA+I) Shifted right cyclically by -(RB) positions

if 0 > (RB) > -32;

(CS) <-- 0010 if (RA,RA+I) a 0;
(CS) <-- 0001 if (RA.RA+I) < 0;
(CS) <-- 0100 if (RA,RA+I) > 0;

REGISTERS AFFECTED: RA, RA+I, RB, CS, PI

DSCR 54

286

MIL-STD--1750A (UJSAF)
2 July 1980

5.24 Rum) on condition.

ADQR MOgDE MNEMONIC FORMAT/OI'CODE

8 4 4 16
o ic C,LABEL-- - - - - - - - - - - - - - - - - - -
DX JC C.LABEL,RX 1 70 1IC I RX I I LABEL I

8 4 4 18
I JCI C,ADDR-- - - - - - - - - - - - - - - - - - -
IX JCI C,ADOR,RX 1 71 1 C IRX II ADOR I

DF.SRIV IION: This is a conditional jump instruction wherein the instruction sequence jumps to the Derived

Address, D)A, if a logical one results from the following operation:

(1) Thc 4-bit C field is bit-by-bit ANDed with the 4-bit condition status, CS

(2) Thc resulting 4-bits are ORed together

(3) orifC =7orC =F.

Otherwise, the next sequential instruction is executed.

Condition Code

0000 0 NOP
0001 1 less than (zero) LT LZ M
0010 2 equal to (zero) EQ EZ -

0011 3 less than or equal to (zero) LE LEZ NP
0100 4 greater than (zero) GT GZ P
0101 5 not equal to (zero) NE NZ -

0110 6 greater than or equal to (zero) GE GEZ NM
0111 7 unconditional- -

1000 8 carry CY - -

1001 9 carry or LT- - -

1010 A carry or EQ- - -

1011 8 carry or LE- - -

1100 C carry or GT- -

1101 0 carry or NE- - -

1110 E carry or GE- - -

1111 F unconditional- -

55 JCJCI

287

MIL-SFD-1750A (UISAF)
2 July 1980

REGISTER TRANSFER DESCRIPTION:

(IC) <--- DA if C 7, or

if C F, or

if (C~t CS0) V (C~t CS1) V (C2t CS2) V (C3t CS3) I

REGISTERS AFFECTEO: IC (if jump is executed)

JC.JCI56

288

MIL-SID-1750A (USAF)

2 July 1980

ADDR ~!D NMO!LI&L 1, 1110RM A 10P C 00E

8 4 4 16

D is RA.LABEL - - - - - - - - - - - - -- - - - - -

DX is RA.LABFL,RX I 72 IRA I RX II LABEL

IW'SCIIION: [lie valkie of the instruction counter (the address of the next sequential instruction) is sorcd into
rciuster RA. lihcn. the IC is set to dlie derived address, DA, thuIs effecting tie junip. 'I his sets up
the return1 From subroutine to the address storcd in the register RA, i.e.. an indexed unconditional
jump trorn location /.cro using RA as the index register shiall transfecr control to die instruction
following the JS instruction.

Note: If RA :-X. then the derived address DA, is calculated before the IC is stored in RA.

REGISTER IRANSFER DESCRIPTION:

(IC) <--- DA-,

REGISTERS AFFECTED: RA. IC

57 is

MIL-STD-1750A (USAF)
2 July 1980

5.26 Subtract one and uf.

ADOR MODE MNEMONIC FORMAT/OPCODE

8 4 4 16
0 SOJ RA.LABEL-- - - - - - - - - - - - - - - - - - -
DX SOJ RA.LABEL,RX 1 73 1 RA I RX I I LABEL I

D)FSCRIPTION: 'Ihle 16 bit contents of register RA are decremcrnted by one. Then if the content (if register RA is
zero, the next sequential instruction is executed. If the content of register RA is fln-/cro, then a
jump to the l)crivcd Address, DA, occurs.

Note: If RA =RX. then the derived address, MA, is calculated before RA is decremented.

REGISTER TRANSFER DESCRIPTION:

(RA) <-- (RA) - 1;

(IC) <-- DA if (RA) 0 0;

(CS) <-- 0010 if (RA) =0;
(CS) <-- 0001 if (RA) < 0;
(CS) <-- 0100 if (RA) > 0;

REGISTERS AFFECTED: RA, CS, IC (if the jump is executed)

4SOJ 58

290

MIL-STD-1750A (USAF)
2 July 1980

5.27 I1iii i u ncnIIL h YI~(fS11 l.

ADLUR MODIE fjN .MO NIC. FORMA[I/OPCOE~

8 8

ICR BR LABEL 1 74 I D 1-128 D~ < 127

I)FSR I [ON: A program bianch is made to I A IUI., i.e., thc Decrived Addrms. DA.

REGISTER TRANSFER DESCRIPTION:

(IC) <-- DA;

REQIS1EJIS AFFECTED: IC

59 JRR

291

MIL-STD-1750A (USAF)
2 July 1980

i.28 Branch ifoutial to (,cj.

ADOR MODE MNEMONIC LfjRMAI/OPCODLp

8 8

ICR BEZ LABEL 1 75 1I -128 C 127

DESCRIPTION: A program branch is made to I AH . ice.. the Derived Address, D)A, IILhc wonition stawus CS,
indicates that the previous result whidh sct the CS is equil to(/cro). Ohcise ~i. the lest

sequential instRuCtion is executed.

REGISTER TRANSFER DESCRIPTION:

(IC) <-- DA if (CS) X010;

REGISTERS AFFECTED: IC (if the jump is executed)

BI 60(

292

Nim -SIU-1750A (USAF)

2 July 1980

AIDR MOOL MNLMONC l_)R4Ai/OP QOj

8 8

ICR BLIT LABEL I 76 J D i -128 j D < 127

l)[SCRIIPION: A prograxn branch is made to lABl.., ie., the Derived Address.)A, if the condition status, CS,
indicates that the previous result which set the CS is less than (zero). Otherwise, the next
sequential instruction is executed.

REGISTFR TRANSFER DESCRIPTION:

(IC) <-- DA if (CS) XOOI;

REGISTERS AFFECTED: IC (if the jump is executed)

61 I :r

293

MIL-STD-1750A (USAF)
2 July 1980

5.30 Iranch to executive.

AIJOR MOO MNEMONIC FORMAT/OPCODE

8 4 4

S BEX N 77 10000 N I

DFSCRIPI'ION: This instruction provides a means to jump to a routine in another address state, AS. It is typically
used to make controlled, protected calls to an executive. "llic 4-bit literal N %elects one of 16
executive entry points to be used. Execution of this instruction causes an interrupt to occur using
the EXEC call interrupt vectoi (interrupt 5). I'lhc new IC is loaded from the Nth location
following the SW in the new processor state. 'I he linkage pointer (I.), service pointer (SVP), and
the new processor state (new MK, new SW, and new IC) are ietched from address state zero. The
current processor state (old MK, old SW, and old IC) are stored in the address state specified by
the new SW AS field. Interrupts are disabled when BEX is executed. "'lie I-XFC call interrupt
cannot be masked or disabled. Arguments associated with the BEX instruction are passed by
software convention. The processor lock and key function is ignored when this instruction is
executed. An attempt to branch into an execute protected area of memory shall result in IT0
being set to L

REGISTER TRANSFER DESCRIPTION:

(RQ,RQ+1,RQ+2) <-- (MKSW,IC);

(SVP) <-- [2B16] , where AS = 0;

P15 <-- 1;

(MKSW,IC) <-- [(SVP),(SVP)+I,(SVP)+2+N)], where AS = 0:

(LP) <-- [2A1 6] , where AS - 0;

[(LP),(LP)+I,(LP)+2] <-- (RQ,RQ+1,RQ+2), where AS =SW12_s;

REGISTERS AFFECTED: MK, SW, IC, PI

,I'FX 62

294

~!

MIL-STD-1750A (USAF)

2 July 1980
5.31 Br~nch irl.',chmn or cuual to (ero).

AODR MOD E MNEMONIC FOR~MA I/QPC2DE

8 8

ICR BLE LABEL I 78 I D 1 -128 J D (< 127

I)FSCR IPTION: A program branch is made to I.AliI.. i.e., the)erived Address,)A, if the condition status, CS,
indicates that the previous result which set the CS is less than or equal to (zero). Otherwise, thc
next sequential instruction is executed.

REGISTER TRANSFER DESCRIPTION:

(IC) <-- DA if (CS) = XOO or (CS) - XOO1;

REGISTERS AFFECTED: IC (if the jump is executed)

63 BLE

295

MIlt-SfD-175OA (USAF)
2 July 1980

5.32 BranchIti I g.reater than (Zero).

ADOR MODJL !INLMON L. f ORLA1OP QDF

8 8

ICR I3GT LABEL 1 79 I 0 1 -128 < 127

1)1-'SCRlI'ION: A programn branch is inade to [.A ITI.. i.e., the D~erived Address, D)A, if the condition status, CS,
indicate,. that the previous result which set the CS is greitcr than (zec). Otherwise, the next
seqIuent6illAl I~Ction is executed.

REGIStER TRANSFER DESCRIWrON:

(IC) <-- DA if (CS) X100;

REGISTERS AFFECTED: IC (if the jum~p is executed)

DIG, IF

296

4MIL-STD-1750A (USAF)
2 July 1980

5.33 Branch if 11t cutIIl to (zcr.

At)DR MQE MNLMONIC FORMAT/OPCODE

8 8

ICR BNZ LABEL I 7A I D 1 -128 _. D K 127

I)ISCRIPTION: A program branch is made to LABEI. i.e., the Derived Address. I)A, if the condition status. CS,
indicates that the prcvious rcsult which set the CS is not equal to (ziero). Otherwise, the next
scqucntial instruction is executed.

REGISTER TRANSFER DESCRIPTION:

(IC) <-- DA if (CS) X100 or (CS) - X001;

REGISTERS AFFECTED: IC (if the jump is executed)

65 1BNZ

297

__________________________________ -

.4

MIL-STD-1750A (USAF)

2 July 1980

5.34 Iranch if Preater than or equal to (zero).

ADOR MODE MNEMONIC FORMAT/OPCODE

8 8

ICR BGE LABEL I 7B I D 1 -128 < D < 127

I)|'SCRIYI'ON: A program branch is made to LAIRF., i.e., the Derived Address, I)A. if the conditon stltus, CS,
indicates that the previous result which set the CS is greatci tihan or eqLIal to (zero). Otherwisc, the
next sequential instruction is executed.

REGISTER TRANSFER DESCRIPTION:

(IC) <-- DA if (CS) = XI00 or (CS) = XOIO;

REGISTERS _AFFECIED: IC (if the jump is executed)

"1

IIGE 66

298

MIL-ST--1750A (USAf)
2 July 1980

AVOR MODE ! I i.fx__A r/OPODE

8 4 4 18
o LST ADOR

DX LST ADDR.RX I 70 100001 RX I I ADOR

8 4 4 16
I LSTI ADOR

ix LSTI ADDR,RX I 7C 100001 RX I I ADOR I

1)1-SCRIYIION: Thccontcnts of the Derived Address, DA. and DA+1, and)A+2 are loaded into the Interrupt
Mask register, Status Word register and Instruction Counter, respectively. This is a privileged
instruction.

N=: This instruction is an unconditional jump and is typically used to exit from an interrupt routine.
DA, DA + 1, and DA + 2, in this typical case, contain the Interrupt Mask, Status Word, and
Instruction Counter values for the interrupted program and the execution of LST causes the
program to return to its status prior to being interrupted.

REITRTRANSFER DESCRIPTION:

(MK, SW, IC) <-- [DA. DA+I. DA+2];

REGISTERS AFFECTED: MK. SW. IC

67 LSI"LSTI

299j

IiI,

MIL-STD-1750A (USAF)
2 July 1980

5.36 Stack IC and immo to subrutine.

ADOR MODE MNEMONI fORMAT/OPCODE

8 4 4 16
D SJS RA.LABEL-- - - - - - - - - - - - - - -- - -- -
DX SJS RA.LABEL.RX I 7E I RA I RX I I LABEL I

l)!'SCRIPTION: The contents of register RA are dccremcntcd by one. lbc addrcsi of the instrixtifln Cnilowing the
SJS instruction is stored into the rnernory location pointed to by RA. Programn control is then
transferred to the instruction at the D~erived Address, I M,. RA is thc stack pointer aind can he
selected by the programmecr ats any one of tie 16 general registers.

Note: If R A = RX, then the derived address, D)A, is calculated before RA is dlecremented.

REGISTER TRANSFER DESCRIPTION:

(RA) <-- (RA) - 1;

(IC) <-- DA;

REGISTERS AFFECTED: 1C. RA

SiS 69

300

M[L-STD-1750A (USAF)
2 July 1980

5 37 Uns ick (and rcl'n from suhr.jj'9_.

ADOR MODE MNEMONIC FORMAT/OPCODE

8 4 4

S URS RA J 7F JRA 1 0

Il:SCRIPYION: The contents of thc memory location pointed to by register RA is loaded into the instruction
counter, IC. RA is then incremented by one. Any one of the 16 general registers may be
d signatcd as the btack pointer. This instruction is the subroutine return for SJS. Stack and Jump
to Subroutine.

REGISTER TRANSFER DESCRIPTION:

(IQ) <-- [(RA)];

(RA) <-- (RA) + 1;

REGISTERS AFFECTED: RA. IC

69 URS

301

MIL-STD-1760A (USAF)
2 July 1980

5.38 Single prcision loa.

ADDR MODE MNEMONIC FORMAT/OPCODE

8 4 4

R IR RA.RB 1 81 1 RA I RB I

4 2 2 8
---------------- 12(B R(<15

B 18 BR,DSPL 1 0 10 IBR-l DSPL I BR' O R -12

--- -- -- --- -- -- -- RA R2

4 2 2 4 4
----------------- 12(<BR <l6

Ox LBX BR,RX 1 4 10 IBR'I 0 1 RX I BR' O R - 12
--- --- --- --- --- --- RA = R2

8 4 4

ISP LISP RA.N 1- 82 1 RA 1N-1 I 1I N 516

8 4 4

ISN LISN RA.N 1 83 1 RA IN-I I I 5N 516

8 4 4 16
D L RA,ADDR-- - - - - - - - - - - - - - - - - - -

DX L RA,ADDR.RX I 80 IRA I RX II AODR

8 4 4 16

IM LIM RADATA 1 85 1 RA I RX I I DATA I
IMX LIM RA,DATA.RX-- - - - - - - - - - - - - - - - - - -

8 4 4 16
1 LI RA,ADDR-- - - - - - - - - - - - - - - - - - -

Ix LI RA,AODR,RX 1 84 1RA I RX I I ADOR I

DESCRIPTFION: The singlc precision Derived Operand, 1D0, is loaded into the register RA. The Condition Status,

CS, is set based en thc result in register RA.

I R.1LISP.l.SN.l.jIXjl-l 1,1,IM 70

302

MIL-STD-1750A (USAF)
2 July 1980

BL(AtSTFR I.LYI Eli QJLS'UH I 191j:

(RA) <-- DO;

(CS) <-- 0010 if (RA) =0;
(CS) <-- 0001 if (RA) < 0;
(CS) <-- 0100 if (RA) > 0;

RFGISTERS AFFECTED: RA, CS

-11

* 303

MIL-STD-1750A (UJSAF)
2 July 1980

5.39 I)uhleciso I~So!ad.

ADOR MOVE MNEMONIC FORMAT/OPCODE

8 4 4

R DIR RA.RB 1 87 1HA I RB

4 2 2 8
-------------- 12 < BR ~I15

B 018 BR.DSPL 1 0 It IBR'I DSPI I BR' BR 12
--------- -- - --- --- RA RD

4 2 2 4 4
---- --- --- --- --- --- 12 < BR < 15

BX DLBX 8R,RX 1 4 10 IBR'jI I RXI BR' =BR - 12
- -- - - - - - - - - RA HOR

8 4 4 16
D DL RA.ADDR--------------------------- ------ ------- --

DX DL RA.ADDR,RX 1 86 1 RA IRX I I ADOR I

8 4 4 16

1 01-I RA,ADDR 1 88 1IRA IRX II ADOR I
Ix DLI RA.ADDR,RX-- - - - - - - - - - - - - - - - - - -

DESCRIPTION: Thc double precision Derived Operand. DO. is loaded into the register RA and RA + I such that
the NISH of D)O is in RA. 'lhe Condition Status, CS. is set based on the result in RA and RA + 1.

REGISTER TRANSFER DESCRIPTION:

(RA,RA+1) <-- DO;

(CS) <-- 0010 if (RA,RA+1) =0 (Double fixed point zero):
(CS) <-- 0001 if (RA.RA+1) < 0;
(CS) <-- 0100 if (RA,RA+1) > 0:

REGISTERS AFFECTED: RA, R101, CS

DI.RI)I 1.1) I~XI)I D~l72

304

I

MIL-STD-1750A (USAF)
2 July 1980

S 40 1 ,..id milIp)(l I .sc

At)DR MODE MNLMONIC FOIMA/OPCODE

8 4 4 16
o L M N , A D D R .
OX LM N.ADDR,RX I 89 I N I RX I I ADDR I

----------------------- ------------------
0 < N < 15

I) SCRI11I [ON. Ilic contents of the I)crived Address. I)A, are loaded into register RO, then the contents of the
1), F I are loided into register RI ... , finally, the contents ofl)A + N are loaded into RN.
Fffectively this instruction allows the transfer of (N + 1) words from memory to the register file.

REGISTER TRANSFER DESCRIPTION:

(RO) <-- [DA]

(Rl) <-- [DA~t];

(R2) <-- [DA+2];

(RN) <-- [DA+Nj;

REGISTERS AFFECTED: RO through RK

73 IM

305

-71

MIL-STD-1750A (USAF)
2 July 1980

5.4 1 Ex tendcd orecision ll tin e point load.

ADOR MOOE MNEMONIC fOR?4AT/OPCODL

8 4 4 16
D EFL RA ADDR-- - - - - - - - - - - - - - - - - - -

DX EFL RA,ADDR,RX I 8A I RA IRX II ADDR I

1)1 SCR IP lIION: The extended precision floating point I)riscd Operand, DO,. is loaded into registers RA,
RA + 1. and RA + 2 su~ch that tile mo,,t significant 16-its of the word are loaded into register RA.
Mbe condition status. CS, is set based on the results in registers RA, RA + 1. and RA + 2.

REGISTER TRANSFER DESCRIPTION:

(RA, RA+l. RA+2) <-- 00O;

(CS) <-- 0010 if (RA, RA+1, RA+2) = 0;

(CS) <-- 0001 if (RA, RA+t, RA+2) < 0;
(CS) <-- 0100 if (RA, RA4-1, RA+2) > 0;

REGISTERS AFFECTED: RA, RA+1, RA+2, CS

El-I 74

306

NIlt-STD-1750A (USAF)

2 July 1980

5.42 1 (Rad fiom umppei IVtC.

ADOR MODE MNEMONIC LORMAT/OPCODE

8 4 4 16
0 LUB RA,ADDR-- - - - - - - - - - - - - - - - - - -
DX LUB RA,ADDR,RX 1 813 1 RA I RX I I ADOR II

8 4 4 16

I LUBI RA.ADDR I 8D I RA IRX I I ADOR I
Ix LLJBI RA,ADDR.RX-- - - - - - - - - - - - - - - - - - -

.[I:ISC R I P H0N: 'The MSH (upper byte) of tiec Derived Operand, 1DO, is loaded into the LSII (lower byte) of
register RA. 'nc MSH- (upper byte) of RA is unaffected. 'lhe condition status, CS, is set based on
thc result in RA.

REGISTER TRANSFER DESCRIPTION:

(RA) 8 -15 <-- O7-

(CS) <-- 0010 if (RA) = 0;
(CS) <-- 0001 if (RA) < 0;
(CS) <-- 0100 if (RA) > 0;

REGISTERS AFFECTED: RA, CS

75 I.LiB I VP'

30i

MIL-STD-1750A (USAF)
2 July 1980

5.43 I -oad from lower byte.

ADDR MODE MNEMONIC FORMAT/OPCODE

8 4 4 16
D LLB RA.ADDR-- - - - - - - - - - - - - - - - - - -
DX LLB RAADDRRX 8 C IRA I RX II ADDR

8 4 4 16
I LIBI RA.ADDR-- - - - - - - - - - - - - - - - - - -
IX LIBI RA,ADDR,RX 8 E IRA I RX II ADDR

I)ESCRIPI ION: Ihe [SF1 (lower byte) of the Derived Operand, DO, is loaded into the [SI- (lower byte) of
register RA. 'Ihe MSHl (upper byte) of RA is unaffected. 'Ihe condition status, CS, is set baswd on
the result in RA.

REGISTER TRANSFER DESCRIPTION:

(CS)-5 (-- 00 -1(R)5;0

(CS) <-- 0010 if (RA) = 0:
(CS) <-- 0001 if (RA) < 0;

REGISTERS AFFECTED: RA, CS

IA. .1 [lI 76

308

Mft-SfU 1;50A (USAF)
2 J&uiy L980

5.44 Pop inultiolc revimtcrs olf the sack.

A2DR MQODE MNEMONIC I0:o.AJp OtW

8 4 4

S POPM RA.RB I 8F I RA I RD I

DESKjeTlON: For RA < RB. rcglstcrs RA through RI :Are loadcd scqucnti.ll% fr,,ni a sak :i nmory using R 15
as the stack pointer.

For RA > Rh, registcrs RA through R14 and then RO through R11 arc loaded scqucntially from

the stack.

In both cases,

a. as each word is popped from the stack, RI5 is incrcmcnted by one:

b. if R 15 is included in the transfcr, then it is effectively ignored;

c. on completion, RIS points to the top word or the stack remaining.

REGISTER TRANSFER DESCRIPTION:

if RA < RB then

for i = 0 thru RB - RA do
begin
if RA + 1 0 15 then (RA + i) <-- [(Ri6)];
(R15) <-- (R16) + 1;
end;

else
begin
for 1 -0 thru 15 - RA do

begin
If RA + 1 0 15 then (RA + i) <-- [(R15)];
(R15) <-- (RI6) + 1;

endi
for i 0 thru RB do

begin
(i) <-- [(R15)].

(R6) <-- (RI6) + 1;
end,

end;

REGISTERS AFFECTED: RA through R14, RO through RB, RI6

77 I101iM

309

4

MIL-STD-1750A (USAF)
2 July 1980

5.45 Single precision store.

ABOR MOO MNEMONIC FORMAT/OPCOUE

4 2 2 8
--- -- -- --- -- -- -- 12 OR 15

8 STB BR,DSPI 1 0 12 IBR'I DSPL I BR' O R -12
--- -- -- --- -- -- -- RA R2

4 2 2 4 4
--- -- --- -- --- -- -- 12 < R 1 5

BX STBX BR,RX 1 4 10 IBR-1 2 1RX I OR' = BR -12

--- -- --- -- --- -- -- RA = R2

8 4 4 16
D ST RA,ADDR-- - - - - - - - - - - - - - - - - - -

DX ST RAADDR,RX 1 90 1 RA I RX I I ADOR I

a 4 4 16

I STI RA,ADDR 1 94 1 RA I RX I I ADOR I

Ix STI RA,ADDR.RX-- - - - - - - - - - - - - - - - - - -

DESCRIIION: The contents of the register RA are stored into the Derived Address, DA.

REGISTER TRANSFER DEITIONQt:

[DA] <-- (RA);

REGISTERS AFFECTED: None

slisvisr,s'ri 78

310

MIL-STO-1750A (USAF)
2 July 1980

5.46 Store a flofl-fldtive constant.

ADOR MOD MNEMONIC fOiMAT/OPCODE

8 4 4 16
o sic N.ADDR-- - - - - - - - - - - - - - - - - - -
Ox STC N.ADDR,RX 1 91 1N I RX I I ADOR II

8 4 4 is

I STCI N,ADDR I 92 IN I RXI ADOR
Ix STCI N.ADDR.RX-- - - - - - - - - - - - - - - - - - -

DJ2ECIE1]ON: The constant N. where N is an integer (0 - N <- 15) is stored at the Derived Address. DA. For the
special casc of storing zero into memory the mnemonics

STZ ADDR.RX for direct addressing
and STZI ADDR.RX for indirect addressing

may be used. In this special case, the N field equals 0.

REGISTER TRANFERf DESClRIPION:

[DA] <-- N, where 0 SN j 15;

REGISTERS AFFECTED: None

79 Sf Tc 15s-cI S'r/r
4 311

MIL-STD-1750A (USAF)
2 July 1980

5.47 Move multiple words. memorv-to- memory.

ADDR MODE MNEMONIC FORMAT/OPCODE

8 4 4

S MOV RA.RB I 93 IRA I RB

111WSCRIPFION: 'Mis instruction allows the memory-to- memory transfer of N words where N is an integer
between zero and 2 16- I and is represented by the contents of RA + 1. 'I'e contents of RB are the
address of the first word to be transferred and the contents of RA are the address of where tthe
first word is to be transferred. After each word transfer, RA and RB are incremented, and R A -+ I
is decremented.

Note: Any pending interrupts are honored after each single word transfer is completed. The IC points
to the current instruction location until the last transfer is completed.

RA has a final value of the last stored address plus one, RA + 1 has a final value of zero.

RB has a final value equal to the address of the last word transfered plus one.

REGISTER TRANSFER DESCRIPTION:

Step 1: [(RA)] <-- [(RB)] if (RA+1) > 0: Go to Step 4 otherwise;

Step 2: (RA) <-- (RA)+I. (RB) <-- (RB)t-1, (RA+1) <-- (RA+1)-1;

Step 3: REPEAT STEPS 1 and 2;

Step 4: Set IC to next instruction address:

REGISTERS AFECS.TED: RA, RA+1. RB

MOV SO)

312

MIL-STD-1750A (USAF)

2 July 1980

5.48 I)oubli DIcion store.

ADDR MODE MNEMONIC FORMAT/OPCODE

4 2 2 8
12 < BR 15

B DSTB BR.DSPL 1 0 13 IBR'I DSPL I BR' = BR- 12
RA RO

4 2 2 4 4
12 BR < 15

BX DSTX BR,RX I 4 10 IBR-I 3 I RX I BR' = BR - 12
RA =RO

8 4 4 16

o DST RAADR

DX DST RA.ADOR.RX I 96 1 RA J RX I I ADDR I

8 4 4 16

I DSTI RA,ADDR 9 98 I RA I RX I I ADOR I
IX OSTI RAADDRRX ----------------...

I)ESCRIMrION: The contents of registers RA and RA + 1 are stored at the Derived Address, DA, and DA + 1.
respectively

REGISTER TRANSFER DESCRIPTION:

[DA. DA+1] <-- (RA.RA+I);

REGISTERS AFFECTE: None

81 DS'I'B,DSITX,DsT.,)s'r

I

MIL-STD-1750A (USAF)

2 July 1980

5.49 Stioe register through mask.

ADDR MODE MNEMONIC FORMAT/OPCODE

8 4 4 16
o SRM RA,ADDR --

DX SRM RA,ADDR,RX I 97 I RA I RX I I ADDR

l)I:SCRIlYI'ION: I'hc contents of register RA are stored into the)crived Address, IA, through the mask in register
RA + 1. I-or each position in the mask that is a one, the co responding bit of register RA is stored
into the corresponding biL of the)A. For each position in the mask that is a /cro no change is
made to the corresponding bit stored in the I)A.

REGISTER TRANSFER DESCRIPTION:

[DA] <-- ([DA] t (RA+1)} v ([RA] t [RA+I]);

(RA+I) = MASK, (RA) = DATA:

or, equivalently,

(RQ) <-- [DA]:

(RQ) <-- (RA) i if (RA+1)1 = 1 for i 0, 1 15;

[DA] <-- (RQ);

REGISrERS AFFECTED: None

SRM 82

314

MIL-STD-1750A (USAF)
2 July 1980

5.50 o rc inu i ij vg . ,

ADDR MODE MNEMONIC FOlRMAI/OPCODE

8 4 4 16
0 S T H N .A D O R
DX STM N.ADDRRX 1 99 I N I RX I I ADOR I

I)ESCRI'IION: 'the contents of register RO are stored into thc Derived Address, DA; then the contents of RI
are stored into DA + I;; finally, the contents of RN arc stored into DA + N where N is an
integer, 0 N < 15. Effectively, this instruction allows the uansfer of(N + 1) words from the
register file to memory.

REGISTER TRANSFER DESCRIPTION:

[DA] <-- (RO);

[DA+I] <-- (RI);

[DA+2] <-- (R2);

IDA+N] <-- (RN) 0 N K 15;

REGISTERS AFFECTED: None

83 SiM

315

MJL-STO-1750A (USAF)

2 July 1980

5.51 I'mynded prec isioni foatinoin st~Lore.

ADOR MODE !!kFMONJ F 0R M A T/O. 9

8 4 4 16
0 EFST RA,ADDR - - - - - - - - - - - - - - -- - - -
DX EFST RA,ADDRRX I 9A IRA I RX I I ADDR

DFSCRIPIOiN: Theccontent% of registers RA, RA + 1, RA +2 arc stored at the Decrived Address,. I)A I) M 1, anid
DA+2.

REGISTER TRANSFER DESCRIPTION:

[DA, DAM1. DAM2] <-- (RA, RA+1, RA+2);

REGISTERS AFFECTED: None

EFST F

316

MIL-STD-1750A (USAF)

2 July 1980

5.52 Store int (ivu~nr byte.

ADDRfi hQQ MNEMONIC FOtRMAT/OPCODE

8 4 4 16

D STUB RA,ADDR-- - - - - - - - - - - - - - - - - - -

Ox STUB RA.ADDR.RX 1 98 1 RA I FIX I I ADDR I

8 4 4 16

I SUB! RA.ADDR I 90 I RA IRX II ADDR I
Ix SUBI RA.ADDR,RX-- - - - - - - - - - - - - - - - - - -

I WSCR IPTION: The L-SH (lower byte) of register RA is stored into the MSI I (upper byte) of the Derived Address,
I)A. 'Ihe I SI-l (lower byte) of the DA is unchanged.

REGISTER TRANSFER DESCRIPTION:

[DA] 0 -7 <-- (RA) 8 -15 ;

REGISTERS AFFECTED: None

85 STll BSU Ill

1 0,1317

WOR

MIL-STD-1750A (USAF)
2 July 1980

5.53 Store into lower byte.

ADOR MODE MNEMC41,K FORMAf/OPCODE

8 4 4 16
D STIB RA,ADDR-- - - - - - - - - - - - - - - - - - -

DX STLB RA,ADDR,RX I 9C I RA I RX I I ADDR I

a 4 4 16

I S181 RA.ADDR I 9E I RA I RX 1 1 ADDR I
Ix SLBI RA,ADDR.RX-- - - - - - - - - - - - - - - - - - -

Df)ESCRIP'JION: 'Ihe LSH (lower byte) of register kA is stored into the LSH (lower byte) of the Dcrived Address,
DA. Tlhe MSI i (upper byte) of the D)A is unchanged.

REGISTER TRANSFER DESCRIPTION:

[DA] 8 -15 <-- (RA)S- 15:

REGISTERS AFFECTED: None

si'insim86

4 318

MIL-STD-1750A (USAF)
2 July 1980

5.54 Push iilip !! c c jhe suick.

ADDR MODE MNEMONIC FORMAT/OPCODE

8 4 4

S PSHM RA,RB I 9F I RA I RB I

DESCRIPTION: For RA < RB, the contents of RB through R A are pushed onto a stack in memory using RI5 as
the stack pointer. As each register contents are pushed onto thc memory stack, RI5 is
decremented by one word for each word pushed. On completion, RIS points to the last item on
the stack, the contents of RA.

For RA > RB, tho contents of RB through RO, and then the contents of R15 through RA, are
pushed onto the stack. On completion, RIS points to the last item on the stack, the contents of
RA.

In both cases, successive increasing addresses on the stack correspond to successive increasing
register addrcsses, with a point discontinuity between RI5 and R0 in the latter case.

EXAMPIE: PSHM R3,R5 results in

(R15) -->1 (R3) I
-------------- I

I (14) I
-------------- I

(e5) I

PSHM R14,R2 results in

(R15) -->I (R14)

-------------- II (R15)

-------------- I
(RO)

-------------- I
(RI)

-------------- I
(112)

87 lPSEHM

MIL-SID-1750A (USA,)
2 July 1980

R[ICislf R TRANSI I I)LSC UP 11I1:

if RA < RB then
for i = 0 tthru RB - RA do

begin
(RI5) <-- (Ri5) - 1;
[(RI5)] <-- (RB - i)
end;

else
beg in
for i 0 thru RB do

beg ii
(R15) (-- (RIS) 1;
[(RI5)] <-- (RB - i)

end;
for i 0 thru 15 - RA do

begin
(R15) <-- (R15) - 1;
[(R15)] <-- (R15 - i);
end;

end;

REGISTERS AFfECTED: RI5

PSi I M

320

MIt SI) 1150WA (USAF)
2 July 1980

ADDR MDi MNtMONI.j I O).A [f/OPCO0

8 4 4

R AR RA.RB I Al I RA I RB I

4 2 2 8
12 < BR / 15

B AB BR,OSP(1 1I0 18R'I)SPI I BR' BR - 12
.RA R2

4 2 2 4 4
....- -12 e BR < 15

BX ABX BR,RX 1 4 IO IBR-I 4 1 RX I BR' = BR - 12
RA = R2

8 4 4

ISP AISP RA,N I A2 I RA IN-1 I I (N < 16

8 4 4 16
D A RA,ADDR
DX A RA,ADDR,RX I AO I RA I RX I I ADDR I

8 4 4 16

IM AIM RA,OATA 4A I RA I I I I DATA

DESCRIPlION: The i)crived Operand (D)) is added to the contents of the RA register. The ,-sult (a 2's
complement sum) is stored in register RA. The condition status (CS) is sct based on the result in
register RA and carry. A fixed point overflow occur if both operands are of the same sign and
the sum is of opposite sign.

89 A R,AB.ABX.AISP,A,A I M321 1i

MIL -SID-1750A (USAF)

2 July 1980

RIGISTFR IRANSFFR :FSCRIHIION:

(BA) 2 <- (RA)' + DO;

PI, <-- I1, if (RA,)' DO,0 and (BA,) ' (RA,)'

(CS) <-- 0010 if carry =0 and (HA) 0:
(CS) (-- 0001 if carry =0 and (RA) 0;
(CS) <-- 0100 if carry =0 a nd (RA)) >0 :
(CS) <-- 1010 if carry =1 and (RA) =0:
(CS) <-- 100t if carry z1 and (PA) < 0;
(CS) (-- 1100 if carry = and (RA) > 0;,

REGISfERS AFFECTED: RA, CS, PI

MIL-SID-1750A (USAF)

2 July 1980

5.56 Incicimnt ingmorN hy a Vositivc intoer.

ADDR MODE MNEMONIC IOR14AT/OPCODE

8 4 4 16

0 INCM NADDR

DX INCM N,ADDR.RX I A3 N-1 I RX I I ADDR I

!)ESCRIPIION: 'he contents of the memory location specified by the Dcrived Address, I)A, is incremented by N,
where N is an integer, I N < 16. 'Ibis instruction adds a positive constant to memory. llle
condition stLtus, CS, is set hased on the results of the addition and carry. A fixed point overflow
occurs if the operand in memory is positive and the result is negative. Thc memory location
specified is updated to contain the result of the addition process even if a fixed point overflow
OCcurs.

REGISTER TRANSFER DESCRIPTION:

[DA] 2 I -- IDA]' + N. where 1 (N < 16;

PI4 -- I. if fDA]2 < 0 < [DA]';

(CS) 0010 if carry = 0 and [DA] = 0;
(CS) * l'.) if cai, y = 0 and [DA] < 0;
(CS) '100 if carry = 0 and [DAI > 0:

iCS) 1'.10 if carry = I and [DA] = 0;
(CS) 10 i if carry - I and [DA] < 0;
(CS) I110) if carry = 1 and [DA] > 0;

REGI5t?_R AtELCTED. CS, PI

91 INCM

4: 4

i' - ,

MIt -SID-1750A (USAF)

2 July 1980

5.5 Si1' ,gj)recision ahsoltc va Ilte of reister.

AD]R MODE MNENIj9C FRMAI/ 'OPCODE

8 4 4

R ABS RA.RB I A4 I RA RB I

I)FSCRIIYFIION: If die sign bit of the l)crived Operand. DO (i.e.. Jie sign bit of register R1), is a one, its negative
or 2' s complement is stored into register RA. Ilowcver, it the sign bit of 1) is a zr, it is stored.
tnchanged, into RA. T'he condition status, CS, is set based on the result in regi mr

Note RA may equal RB.

"lhe absolute vzalue ofa number %% ith a I in the sign bit and all other bit, zero is the same word,
and causes fixed point overflow to occur.

REGISTER TRANSFER DESCRIPTION:

P14 <-- I. exit, if DO = 800016;

(RA) <-- IDOl;

(CS) <-- 0001 if (RA) = 800016;

(CS) <-- 0010 if (RA) = 0;
(CS) <-- 0100 ,tf (RA)) 0;

REGISTERS AFFECTED: RA, CS, PI

A [is 92

324

MII--SfD-1750A (USAF)
2 July 1980

5.58 lDoule lcprccgsion ah'~olut vaIlue uf egiste .I

ADDR MODE MNEONI FOlRMAT/OPCODE

8 4 4

R DABS RA,RB I A5 IRA I RB

I)FSCR III'ION: If the sign hit of the douhle precision Derived Operand DO (i.e., the sign bit of' register (11B.
R11 + 1)), is a one, its negative or 2's comnplement is stored into rc:gister RA and RA + 1. such that
register RA contains the MS1 I of the result. However, if the sign bit of 1)0 is a zero, it is stored,
unchanged, into RA and RA + 1. Ibe condition status, CS, is set based on the result in register RA
and RA + 1.

N=: RA may equal RB.

The absolute value of a number with a I in the sign bit and all other bits z.ero is the same word,
and causes fixed point overflow to occur.

REGISTER 1RANSFER DESCRIPTION:

P14 <-- 'I exit, if DO = 8000 000016;

(RA,RA+1) <-- I001;

(CS) <- 0001 if (RA,RA+1) = 8000 000016:

(CS) <- 0010 if (RA,RA+1) =0;
(CS) <- 0100 if (RARA+1)) 0;

93 I)ABS

325

7 PIP 7

MIL-STD-1750A (USAF)

2 July 1980

5.59 1 X)uble precision inlteer add.

ADOR MODE MNEMONIC FORMAT/OPCODE

8 4 4

R DAR RA,RB I A7 I RA I RB I

8 4 4 16

D DA RAADDR

DX DA RA.ADDR,RX I A6 I RA I RX I I ADDR I

I)ESCRIP'I'ION: 'Ihe double precision Derived Operand (1)0) is added to the contents of registers RA and RA + 1.
Ibe result (a 2's complement 32-bit sum) is stored in registers RA and KA + 1. 'he MSH is in

RA. 'Ihe condition status (CS) is set based on the double precision results in RA and RA + 1, and
carry. A fixed point overflow occurs if both operands are of the same sign and die sum is of
opposite sign.

REGISTER TRANSFER DESCRIPTION:

(RA,RA+I)2 <-- (RA,RA+1)' + DO:

PI4 <-- 1, if (RAo)' = DOo and (RAO)' 0 (RAo) 2

(CS) <-- 0010 if carry 0 and (RARA+I) = 0;
(CS) <-- 0001 if carry 0 and (RA,RA+I) < 0;

(CS) <-- 0100 if carry = 0 and (RARA+I) > 0;

(CS) <-- 1010 if carry = 1 and (RARA+t) = 0;
(CS) <-- 1001 if carry = I and (RARA+1) (0:
(CS) <-- 1100 if carry = I and (RARA+I) > 0;

REGISTERS AFFECTED. RA. RA+I, CS, PI

1)\RI)A 94
i 326

__ ___ _ ___MIL-STD-1760A (USAF)
2 July 1980

5.60 H~eating Point add.

AODR MQILE MNEMONIC FORMAT/0T E~

8 4 4

R FAR RA.RB I A9 IRA I RBI

4 2 2 8
---- ---- --- ---- --- 12 < OR < 16

B FAB BR,DSPL 1 2 10 IBR-I DSPL I OR' =BR -12

--- -- --- ----- -- -- RA RO

4 2 2 4 4
--- -- --- -- --- -- -- 12 OR < 15

BX FABX BR,RX 1 4 10 IBR-1 8 1 RX I BR' =BR - 12
--- -- --- -- --- -- -- RA RO

8 4 4 16
o FA RA,ADDR-- - - - - - - - - - - - - - - - - - -
DX FA RA.ADDRRX I A8 I RA I RX I I ADOR I

DFSCRIPTION: The floating point Derived Operand. DO, is floating point added to the contents of registers RA
and RA + 1. The result is stored in registers RA and RA + 1. The oroccss of this operation is as
follows: the mantissa of the number with the smaller algebraic exponent is shifted right and the
exponent incremented by one for each bit shifted until the exponents are equal. Thec mantissa
are then added. If the sum overflows the 24-bit mantissa, then the sum is shifted right one
position, the sign bit restored, and the exponent incremented by one. If the exponent exceeds
VF16 as a result of this incrementation, overflow occurs and the operation is terminated. If the
sum does not result in exponent overflow, the result is normalized. If in the normalization process
the exponent is decremented below 8016. then underfiow occurs and a zero is inserted for the
result.

95 I-ARj-I All1IAAIIX.I:'A

327

MIL-SfD-1760A (USAF)

2 July 1980

REGISTER TRANSFFR DE*CRIPTIIN:

n = EA - FO;

MO <-- MO Shifted Right Arithmetic n positions, if n >° 0 and MA 1 0;

MA <-- MA Shifted Right Arithmetic -n positions, EA (-- EO, if n < 0 and MO 0;

MA <-- MA + MO;

MA <-- MA Shifted Right Arithmetic I position, MAO <--MAO , EA <-- EA+I,

if OVM = 1;

P13 <-- 1, EA <-- 7F16 , MA <-- 7FFF FF16 , exit, if EA > 7F 16 and MA0 = 0;

P13 <-- 1, EA <-- 7F16 , MA <-- 8000 0016, exit, if EA > 7FI 6 and MAO = 1;

EA, NA <-- normalized EA, MA;

P16 <-- 1, EA <-- 0, MA <-- 0, if EA < 80j6;

(CS) <-- 0010 if (RA,RA+1) = 0;
(CS) <-- 0001 if (RARA+I) < 0;
(CS) <-- 0100 if (RA,RA+I) > 0;

REGISTERS AFFECTED: RA. RA+I, CS, PI

FA R,FA , FA RX, FA 96

328

MIL.-STD-1750A (USAF)

2 July 1980

) 6I I tC dl d ict ilo t1(hiip .O ro t a(d.

ADUR MODE MNfMONICL 0HMAI/OPCODL

8 4 4

R EFAR RA,RB I AB I RA I RB I

8 4 4 16
D EFA RA.ADDR
DX EFA RAADDRRX j AA I RA I RX I I ADDR I

DESCRII"I ION: "Ihe extended precision floating point I)crived Operand, 1)0, is extended floating point added to
the contents of register RA, RA + 1. and RA + 2. The result is stored in register RA, RA + 1, and
R A + 2. The process of this operation is as follows: the mantissa of the number with ie smaller
algebraic exponent is shifted right and the exponent is incremented by one for each bit shifted.
When the exponents are equal, the mantissas are added. If the sum overflows the 39-bit mantissa,
then the sun is shifted right one position. the sign bit restored, and the exponent is incremented
by one. If the exponent exceeds 7F 16 as a result of this increinentation, overflow occurs and the
operation is terminated. If the sum does not result in exponent overflow, the result is normalized.
If in the normalization process the exponent is decremented below 8016, then underflow occurs
and a zero is inserted for the result.

REGISTER TRANSFER DESCRIPTION:

n = EA - DO;

MO <-- MO Shifted Right Arithmetic n positions, if n > 0 and MA 0 0;

MA <-- MA Shifted Right Arithmetic -n positions, EA <-- EO, if n < 0 and MO 0 0;

MA <-- MA + MO;

MA <-- MA Shifted Right Arithmetic I position. MAO <--MAO, EA <-- EA+I,

if OVM = 1;

P13 <-- 1, EA <-- 7FIS, MA <-- 7FFF FF FFFF 1 6, exit, if EA > 7F16 and MAO = 0;

P13 <-- 1, EA <-- 7F 16 , MA <-- 8000 00 000016, exit, if EA > 7F 16 and MA0 = 1;

EA, MA <-- normalized EA, MA;

P16 (-- 1, EA <-- 0, MA <-- 0, if EA < 8016;

(CS) <-- 0010 if (RA, RA+1, RA+2) = 0;
(CS) <-- 0001 if (RA. RA+I, RA+2) < 0;
(CS) <-- 0100 if (RA, RA+I, RA+2) > 0;

REGISTERS AFFECTED: RA. RA+1, RA+2, CS, PI

97 EFARI.FA

329

MIl.-STD-1750A (USAF)

2 July 1980

5.Q2Ibtn point ahsolute %alue of register

ADUR MODE MNEMONIC LFORMAT/QPCODE

8 4 4

R FABS RA,RB I AC I RA IRBI

I)-SCk I ION: If the sign bit of the man issa of the Il)erivcd Operand, DO0 (i.e., i he con tents oregisrers IW and
RlW+ 1). is a one, its floating point neyatike is stored in registers R A arid RA 4I 1. lbce negative of
0)0 is computed by taking thle 2's complement ofthe mantissa and leaving the exponent

0 Iunchanged. [sAceptions to this are negative possers of two: -1.0 x 2 , -1.0 x2l.. Ihe absolute
~alue of these arc: 0.5 x 21, 0.5 x 22. in other words, the I X) mantissa i hfe oial ih

(Ince position and thle exponent incremented. A floating point overflow shall occur if 1)0 is the
smaflest negaii'e number, -1.0 x 2 127. If the sign bit of l)) is a zero, it is stored unchanged into
RAN and. RA + 1. [hei condition status, CS. is set based on the result in register RA arid RA + 1.

Note: RA mzy equal RB.

DO0 is assumed to he a normalized nunmber or floating point zero.

REGISTER TRANSFER DESCRIPTION:

EA <-- EA+l, MA <-- 4000 0016. if MO =8000 0016;

P13 <- ,E - 116,'M <- 7FFF FE163, exit, if EA > 71 r;

EA <-- EO. MA <-- -MO, if MO < 0, MO # 8000 0016;

EA <-- EO, MA <-- MO, if MO > 0;

(CS) <-- 0010 if (RA,RA+1) = 0:
(CS) <-- 0001 if (RARA+1) < 0;
(CS) <-- 0100 if (RA.RA+1) > 0;

REGISTERS AFFECTED: RA, RA+1, CS, PI

3 0

MIL-STD-1760A (USAF)
2 July 1980

5.63 Sin-&le ciIoI inie~v subtract.

AUDR MODE MNEMONIC E-ORMAT/OPCOQE

8 4 4

R SR RA.RB I B81 RA I RB I

4 2 2 8
---- ---- --- ---- --- 12 < BR < 15

B SBB BR.DSPL I 1 11 B1R'l DSPL I BR'= BR - 12
--- --- --- -- - --- -- RA R2

4 2 2 4 4
-- 12 _BR < 15

OX SBBX BR,RX 1 4 10 18R-1 5 1RX I BR'= BR - 12
--- -- --- -- --- -- -- RA = R2

8 4 4

ISP SISP RA,N I B2 I RA jN-1 I 1 < N < 16

8 4 4 16
0 S RA,ADDR-- - - - - - - - - - - - - - - - - - -
DX S RA.ADDR,RX I BO I RA IRX I I ADDR I

8 4 4 16

IM SIN RA.DATA 4A IRA 12 II DATA

I)FSCRIP]1 ION: The l1crivcd Operand (DO) is subtracted from the contents of the RA register. Thc result, a 2's
complement difference, is stored in RA. Thc condition status (CS) is set based on the result in
register RA and carry. A fixed point overflow occurs if both operands are of opposite signs and
the dcnivcd operand is tie same as the sign of the difference.

99SR.SI1IIIIISISP.SSIM

131

MIL-STO-1750A (USAF)
2 July 1980

REGISTER TRANSFER DESCRIPTION:

(RA)' <-- (RA)' - 0O, i.e., (RA) -DO means {(RA) + 001 + 1;

11 <-- 1. if (RAO)' 0 DOO and (RA0)
2 DO00

(CS) <-- 0010 if carry = 0 and (RA) 0;
(CS) <-- 0001 if carry = 0 and (RA) < 0;
(CS) <-- 0100 if carry = 0 and (RA) > 0;
(CS) <-- 1010 if carry =1 and (RA) = 0;
(CS) <-- 1001 if carry =I and (RA) < 0;
(CS) <-- 1100 if carry =1 and (RA) > 0;

REGISTERS AFFECTED: RA, CS, PI

SR.S ItB.STIXS IS PS.SI M 100

1. 332

MIL.-SID-1750A (USAF)

2 July 1980

5.64 I)eciciicnt memoi Y a p ositive lf.c¢r.

ADDR MODE MNEMONIC FORMAT/OPCODE

8 4 4 16

D DECM N.ADDR
DX DECM N,ADDR,RX I 83 IN-I I RX I I ADDR I

I)SCRIIYIlON 'iTe cortcnt of the memory location specified by the)crived Address. DA, are decremented by
N where N is an integer, I < N < 16. Ibis is the equivalent of a "subtract-from-memory
instruction". The condition status, CS, is set based on the results of the subtraction and carry. A
fixed point overflow occurs if the operand in memory is negative and the result is positive. The
memory location specified is updated to contain the result of the subtraction process even if a
fixed point overflow occurs.

REGISTER TRANSFER DESCRIPTION:

[DA]2 <-- [DA]
1

- N. where 1 . N j 15;

P14 <-' 1, if [DAo]1 < 0 < (DAI]J;

(CS) <-- 0010 if carry = 0 and CDA] = 0:
(CS) <-- 0001 if carry = 0 and [DA] < 0;
(CS) <-- 0100 if carry = 0 and CDA] > 0;
(CS) <-- 1010 if carry = 1 and [DA] z 0;
(CS) <-- 1001 if carry = 1 and [DA] < 0;
(CS) <-- 1100 if carry = I and [DA] > 0;

REGISTERS AFFECTED: CS. P1

101 I)ECM

333

°- - NEW-'EN dQ-W] , , kr=' ,- I ""'..,. 1

Mlt.-STD-1750A (USAF)

2 July 1980

5.65 Single Mrcision nckatc registe .

ADOR MODE MNEMONIC FORMAT/OPCODE

8 4 4

R NEG RA,RB B4 IRA IRB

M)SCR IPTIION: Ilie negative (t.e., the 2's complement) of the D~erived Operand, 1)0O(i.e., thc contents of reg~ster

RB), is stored into register RA. 'Ihe condition status, CS, is set based on the result in registLr RA.

Note: The negative (if zero is zero.

Mle negative of a number with a Itin the sign bit and all other bits zero is the sanmc word, and
causes fixed point overflow to occur.

REGISTER TRANSFER DESCRIPTION:

P14 <-- 1, exit, if DO = 800016;

(RA) <-- -DO;

(CS) <-- 0010 if (RA) = 0:
(CS) <-- 0001 if (RA) < 0;
(CS) <-- 0100 if (RA) > 0;

REGISTERS AFFECTED: RA. CS. P1

N F.G 1

MIt -STD-1750A (USAF)
2 July 1980

5.66 1)oohle orecision neate rcctister.

ADDR MODE MNEMONIC FORMAT/OPCODE

a 4 4

R DNEG RA,RB 0 6 fRA I RB

DESC~rIPON,: The negative (i.e., thc 2's complement) of the I)enived Operand, DO (i.., the contents of register
RB and RB+ 1). is stored into register RA and RA+ I such that register RA contains the MSFA of
the result. Thie condition status, CS, is wet based on dhc result in register RA and RA + I.

Note:Thc negative of zero is zero,

Thlc negative of a number with a 1 in the sign bit and all other bits zero is the same word, and
causes fixed point overflow to occur.

REGISTER TRANSFER DESCRIPTION:

P14 <-- 1, eXit, if DO = 8000 000016;

(RA.RA+1) <-- -DO;

(CS) <-- 0010 if (RA,RA+1) =0:
(CS) <-- 0001 if (RA,RA+1) < 0;
(CS) <-- 0100 if (RA,RA+1) > 0:

REGISTERS AFFECTED: RA. RA+1, CS, PI

4

103 l)NFX

335

MIL-STD-1750A (USAF)
2 July 1980

5.67)ouble precision integer suhtract.

ADDR MODE MNEMONIC FORMAT/OPCODE

8 4 4

R DSR RA,RB B7 I RA I RB

8 4 4 16
D D S R A , A D D R
DX DS RA,ADDR,RX I B6 1RA I RX I I ADDR I

I)FSCRIPTION: The double precision l)erived Operand. IX), is subtracted from the contents of registers RA and
RA + 1. "lie results, a 2's complement 32-hit diffcrcnce, is stored in registers RA and RA + I. he
MSH is RA. The condition status (C'S) is ,et bawcd on the double prccision rcsults in RA and
RA +],-and carry. A fixed point overflow occurs if both operands are of opposite sign and the
derived operand is the same as the sign of the difference.

REGISTER TRANSFER DESCRIPTION:

(RARA+I)2 <-- (RA.RA+1)' - DO, i.e., (RA,RA+I) - DO means ((RA,RA+I) + DO) + 1;

P14 <-- 1, if (RAO)' i DO o and (RAo)
2 DOo;

(CS) <-- 0010 if carry = 0 and (RA,RA+1) = 0;
(CS) <-- 0001 if Carry = 0 and (RA,RA+I) < 0;
(CS) <-- 0100 if carry = 0 and (RA.RA+I) > 0;
(CS) <-- 1010 if carry = I and (RA.RA+I) = 0;
(CS) <-- 1001 if carry I and (RA.RA+I) < 0;
(CS) <-- 1100 if carry = I and (RA.RA+1) > 0;

REGISTERS AFFECTED: RA, RA+I, CS, PI

I)SRJ)S I04

336

i , . ,t. el

MIt-STD-1750A (USAF)
2 July 1980

S, I .1 ,iQo.,lL '~inh (brl.t.

At)fH M_.LL MNEMONIC fORMAI/OPCOOL

8 4 4

R FSR RA.RB I B9 I RA I RB I

4 2 2 8

12 < BR < 15
8 FSB BR.LSPL I 2 11 IBR'I DSPL I BR' BR - 12

----------------------- RA RG

4 2 2 4 4
12 <_ R < 15

OX FSBX BR,RX I 4 10 IBR-I 9 I RX I BR' = BR - 12
RA = RO

8 4 4 16
0 FS RA.ADOR
DX FS RA,ADDRRX I B8 IRA I RX I I ADDR I

- - - - - --- - -- - - - - - - - - - - - - - - --..

I)S-RIMI'ION The floating point Derived Operand, D), is floating point subtracted from the contents of
registers RA and RA + 1. The result is stored in registers RA and RA + I. Ilic process of this
operation is as follows: the mantissa of the number with the smaller algebraic exponent is shifted
right and the exponent incremented by one for each bit shifted until the exponents are equal. The
mantissa of the D) is then subtracted from (RA.RA + 1). If the difference overflows die 24-bit
mantissa, then it is shifted right one position. the sign bit restored, and the exponent incremented
by one. If the exponent exceeds 7F16 as a result of this incrementation, overflow occurs and the
operation is terminated. If the sum does not result in exponent overflow, the result is normalized.
If during the normalization process the exponent is decremented below 8016, then underfnow
occurs and a zero is inserted for the result.

105 FSRFSI,FSBX,FS

WA

MIL-STD-1750A (USAF)
2 July 1980

HrGISTER TRANSFER DESCRIPTION:

n = EA - EO;

MO <-- MO Shifted Right Arithmetic n positions, if n > 0 and MA 0 0;

MA <-- MA Shifted Right Arithmetic -n positions, EA <-- EO, if n < 0 and MO 9 0;

MA <-- MA - MO;

MA <-- MA Shifted Right Arithmetic 1 position, MAO <--MAO, EA <-- EA+I,
if OVM =1;

P13 <-- 1, EA <-- 7FI6 MA <-- 7FFF FF16,, exit, if EA > 7FI,~ and MAO = 0:

P13 <-- 1, EA <-- 71 16 , MA <-- 8000 0016. exit, if EA > 7F,, aiid MAO = 1;

EA, MA <-- normalized EA, MA;

P16 <-- 1, EA <-- 0, MA <-- 0, if EA < 8016;

(CS) <-- 0010 if (RA,RA4-l) = 0;
(CS) <-- 0001 if (RA,RA+1) < 0;
(CS) <-- 0100 if (RA,RA+1) > 0:

REGISTERS AFFECTED: RA. RA+1, CS, PI

FSR.F:SH.SBX,FS 106

338

MhI-SID-1750A (USAF)

2 July 1980

5.69 1Ixtcnded precisionl,iting p4int sulftract.

ADDR MODE MNMONIC FORMAT/OPCODE

8 4 4

R EFSR RA,RB I BB IRA I RB I

8 4 4 16

D EFS RA,ADDR

DX EFS RA,ADDR.RX I BA I RA I RX I I ADDR I

I)ESCRIPIION: I'he extended precision floating point Derived Operand, DO, is extended floating point
subtracted from the contents of registers RA, RA + 1, and RA + 2. 'he result is stored in registers
RA, RA + 1, and RA + 2. The process of this operation is as follows: the mantissa of the number
with the smaller algebraic exponent is shifted right and the exponent is incremented by one or
each bit shifted. When the exponents are equal, the mantissas are subtracted. If the difference
overflows the 39-bit mantissa, then the difference is shifted right one position, the sign bit
restored, and the exponent is incremented. If the exponent exceeds 71 16 as a result of this
incrementation, overflow occurs and de operation is terminated. If the sum does not result 4n
exponent overflow, the result is normalized. If during the normalization process the exponent is
decremented below 8016, then underflow occurs and a zero is inserted for the result.

REGISTER TRANSFER DESCRIPTION:

n = EA - EO;

MO <-- MO Shifted Right Arithmetic n positions, if n > 0 and MA 0 0;

MA <-- MA Shifted Right Arithmetic -n positions, EA <-- EO. if n < 0 and NO 0 0;

MA <-- MA - MO;

MA <-- MA Shifted Right Arithmetic 1 position, MA0 <--MA0 , EA <-- EA+I.

if OVM = 1;

P13 <-- 1, EA <-- 7F1 6 , MA <-- 7FFF FF FFFF16, exit, if EA > 7F1 6 and MAo = 0:

P13 <-- 1, EA <-- 7F16 , MA <-- 8000 00 000016. exit, if EA > 7F16 and MA O = 1;

EA. MA <-- normalized EA. MA;

PI6 <-- 1, EA <-- 0. MA <-- 0. if EA < 801;

(CS) <-- 0010 if (RA, RA+I. RA+2) = 0;
(CS) <-- 0001 if (RA, RA+1, RA+2) < 0;
(CS) <-- 0100 if (RA, RA+I, RA+2) > 0;

REGISTERS AFFECTED: RA, RA+1, RA+2. CS. PI

107 FI-SRF'S

339 I.

MIL-SID-l75OA (USAF)
2 July 1980

5.701) Iloatiie point neiate reej.~ter

ADDI, MODE MNEMONIC FORMAT/OPCODE

8 4 4

R FNEG RA.RB I BC I RA I RB I

I)FSCR I I' ION" lhe 24-bit m.intissa of thc I)erived Operand, IX), i.e.. the floating point number in registers RI
and RI1+ 1, is 2s complemented. The exponent remains unchangcd. The result, the negative (if

the origiia number. is stored in RA and RA +- I. 'lle 2's complcmncat ofa flotting point / -o isi
floating point /ero. Ixceptions to this avc all powers of t,(4: -1.) x 2n and 0.5 X 2" i e., hien thc
mantissa is either 8000 00, or 4000 001,. Ihe negation of O.5 x 2:1 is -1.0 x 2 . i.e the mantissa is
shifted left one position and the exponent decremented by one. Conversely, the negation o? 1o0 Y
2" is 0.5 x 2" '" ': i.e., the mantissa is shifted right one position and the exponent is incemcinried hk
one. A floating point overflow occus for the negation of thc sm;!Ilest negati e number, -1.0 x

P7 A floating point undertlow occurs tbr the negation of the smallest postite number, 0.5 x 2
128, and causes the result to be iero. 'l'he condition status, CS, is set based on die rcult in rcgis;tcrs
RA and RA+ 1.

Note: RA may eqvial R11.

REGISTER TRANSFER ESCRIPTION:

P13 <-- 1, EA <-- 7Ft 5 . MO <-- 7FFF FFr 6 , exit, if DO = 8000 007FtC;

Pl6 <-- 1, EA <-- 0, MA <-- 0, exit, if DO = 4000 008Oe;

EA <-- EO+I. MA <-- 4000 0016, if MO = 8000 0016;

EA <-- EO-1, MA <-- 8000 0016, if MO = 4000 O01;

I !
EA <-- EO, MA <-- -MO, if MO # 8000 0016 or 4000 0016;

(CS) <-- 0010 if (RARA+l) = 0;
(CS) <-- 0001 if (RA,RA+) < 0;
(CS) <-- 0100 if (RA,RA+I) > 0;

REGISTERS AFFECTED: RA, RA+I, CS, P}

10
340

'4..1'2

1IL-STD-1150A (USAF)
2 Juiy 1980

ADDR MODt MNFMONIC FORMAT/OPCODE

8 4 4

R MSR RA.RB I Cl I RA I RB

8 4 4

ISP MISP RA,N C2 IRA IN-I I I (N < 16

8 4 4

ISN MISN RA,N I C3 I RA IN-i I I < N < 16

8 4 4 16

0 MS RA,ADDR

DX MS RA.ADDR,RX I CO I RA I RX I I ADDR I

8 4 4 16

IM MSIM RA,DATA I 4A I RA 1 4 II DATA I

DESCRIPTION: The Derived Opcrand, DO, is multiplied by the contents of register RA. The LSH of the result, a
16-bit. 2's complement integer. is stored in register RA. The Condition Status, CS, is set based on
the result in register RA. A fixed point overflow occurs if(l) both operands are of the same sign
and the MSH of the product is not zero, or the sign bit of the LS1- is not zero, or (2) if the

opcrands are of opposite sign and the MSH of the product is not FFFF1 6.or the sign bit of the

LSH is not one. A fixed point overflow does not occur if either of the operands is zero.

REGISTER TRANSFER DESCRIPTION:

(RQ. RQ+I) <-- (RA) t x DO;

(RA)' <-- (RQ+I);

P! 4 <-- 1, if f(RAo) i = DOo and ((RQ) 0 0 or (RQ+10) = I} or
{(RAo) # 000 and ((RQ) 0 FFFF 1 6 or (RQ+1 0) = a1 and

{(RA)l 0 0 and DO 0 01):

(CS) <-- 0010 if (RA) - 0;

(CS) <-- 0001 if (RA) (0;

(CS) <-- 0100 if (RA) > 0;

REGISTERS AFFECTED: RA, CS, PI

109 MSR.MISI,,MISN.MS.MSIM

341

MIL-STD-1750A (USAF)
2 July 1980

5.72 Singe precision integer mulltiply with 32-hit oro)dti

ADDR MODE MNEMONIC FORMAiT/OPCODE

8 4 4

R MR RA,RB I C5 I RA I RB I

4 2 2 to
---- ---- --- ---- --- 12 < BR < 15

B MB BR,DSPL 1 1 12 IBR-1 DSPL I BR' =BR -12

---- ---- --- ---- --- RA = R2

4 2 2 4 4
--- --- --- --- --- --- 12 < BR 15

BX MBX BR,RX 1 4 10 IBR'I 6 1 RX I BR' = BR -12

---- ---- ---- ---- --- RA = R2

8 4 4 16
0 M RA,ADDR-- - - - - - - - - - - - - - - - - - -
DX M RA,ADDR,RX I C4 I RA I RX IJ ADOR I

8 4 4 16

IM MIM RA,DATA I 4A IRA 1 3 II DATA

I)ESCRIPTION: The D~erived Operand. 1)0, is multiplied by the contents of register RA. Thc result, a 32-bit, 2's
4 complement integer, is stored in registers RA and RA + 1 with~ the MSH of the product in register

RA. The Condition Status, CS. is set based on the result in registers RA and RA + 1.

SPECIAl CA5jj: DO = (RA) = 8000 (the largest negative number), then DO x (RA) =4000 0000.

REGISTER TRANSFER DESCRIPTION:

(RARA+1) <-- (RA) x DO;

(CS) <-- 0010 if (RA,RA+1) = 0;
(CS) <- 0001 if (RA,RA+1) < 0;
(CS) <-- 0100 if (RA,RA+1) > 0;

REGISTERS AFFECTED: RA, RA+1, CS

MR,MII.MIIXN,MIM 110

342

MIL-STD-1750A (USAF)

2 July 1980

5.71 0 oiihkc nicci',Iiiiiccni~jy

ADOR MODE MNEMONIC F()HMAT/ PCODE

8 4 4

R DMR RA.RO C7 I RA I R8 I

8 4 4 16
0 DM RA,ADDR-- - - - - - - - - - - - - - - - - - -

DX DM RA,ADDRRX I C6 I RA I RX I I ADDR I

I)FSCRIIPFION: lhc doublc precision D~erived Operand, DO, a 32-bit 2's complemecnt number, is muiltiplied by
the contents of registers RA and RA + 1, a 32-bit 2's complement number, with die MSH- in RA.
TIhe I .SH of the product is retained in RA and RA + 1 as a 32-bit. 2's complement number. The
MS1 is IOSL The Condition Status, CS, is set based on the doublc precision result in registers RA
and RA + 1. A fixed point overflow occurs if (1) both operands are of the same sign and the MSH
of the product is not zero, or the sign bit of the L SH is not zero, or (2) if the operands are of
opposite sign and the MSH of the product is not FlFI-T -FFFF 16, or the sign bit of the I.SH is not
one. A fixcd point overflow does not occur if either of the operands is zero.

REGISTER TRANSFER DESCRIPTION:

(RQRQ+1,RQ+2.RQ+3) <-- (RA,RA+1) 1 x D0;

(RA,RA+1)2 <-- (RQ+2,RQ+3);

P14 <-- 1. if J(RAO)l = DO0 and ((RQ,RQ+1) 0 0 or (RQ+2 0) = 1)) or
((RA0) 0 000 and ((RQ,RQ+1) 0 FFFF FFFFj 6 or (RQ+2 0)= 0) and
((RA)1 0 0 and DO 0 0)1;

(CS) <-- 0010 if (RA,RA+l) = 0;
(CS) <- 0001 if (RA.RA+1) < 0;
(CS) <- 0100 if (RA,RA+1)) 0.

REGISTERS AFFECTED: RA, RA+1. CS. PI

Ill DMR,DM

361

MIL-STD-1750A (USAF)
2 July 1980

5.74 Floating point multinly.

ADDR MODE MNEMONIC FORMAT/OPCODE

8 4 4

R FMR RA,RB C9 IRA I RBI

4 2 2 8
--- --- --- --- --- -- 12 < BR < 15

B FMB BRDSPL 1 2 12 IBRIj OSPLIj BR' BR -12

-- - --- --- --- --- -- RA RO

4 2 2 4 4
---- ---- ---- ---- --- 12 < BR < 15

BX FMBX BR,RX I 4 10 IBR'I A IRX I BR' B R - 12
--- -- --- -- --- -- -- RA = RO

8 4 4 16
0 FM RA,ADDR-- - - - - - - - - - - - - - - - - - -

DX FM RA,ADDR,RX I C8a RA IRX I I ADOR I

I)FSCRIPIiON: The floating point Derived Operand, DO, is floating point multiplied by the contents of register
RA and RA + 1. The result is stored in register RA and RA + 1. Thc process of the operation is as
follows: the cxponents of thc operands arc added. If the sum exceeds 7F16, a floating point
overflow occurs. If the sum is less than 8016, then undcrfiow occurs and the result set to zero. The
operand mantissas are multiplied and the result normalized and stored in RA and RA + I. An
exceptional case is when both operands are negative powers of two: (-1.0 x 2fl) x (-1.0 x 2m); the
result is a 0.5 x 2 + m + 1. If n + m = W16, this shall yield an exponent overflow, floating
point overflow occurs. Also, it is possible that the normalization process may yield an exponent
underfiow; if this occurs. thcn the result is forced to zero. The condition status, CS. is set based on
the result in RA and RA + 1.

V MRYI 1,1:k MI.[112

4 344

MIL-STO-1750A (USAF)

2 July 1980

REGISIER IRANS1IR DLSCRIPI[ON:

n = EA + EO;

P13 <-- 1, EA <-- 7F1 6, MA <--- 7FFF FF16 . exit, if n) 7F16 and MA0 = MOO;

P13 <-- 1, EA <-- 7F16 , MA <-- 8000 0016. exit, if n > 7F16 and MAO 0 MO0;

P16 <-- 1, EA <-- 0, MA <-- 0, exit, if n < 8016:

MP <-- MA x MO: (integer multiply)

MP <-- MP shift left 1 position;

n <-- n + 1. MPO-23 (-- 4000 0016, if MP 0 23 = 8000 001;e

P13 <-- 1, EA <-- 7F e, MA <-- 7FFF FF 16. exit, if n > 7F16 and MP o = 0;

PI3 <-- 1, EA <-- 7FI6 . MA <-- 8000 0016, exit, if n > 7F16 and MP0 = 1;

n, MP <-- normalized n. MP;

P16 <-- 1, EA <-- 0. MA <-- 0. exit. if n < 8016;

EA <-- n;

MA <-- MPo_23 ;

(CS) <-- 0010 if (RARA+I) = 0;
(CS) <-- 0001 if (RA,RA+I) < 0;
(CS) <-- 0100 if (RA,RA+I) > 0;

REGISTERS AFFECTED: RA. RA+I. CS. PI

113 PMR,FMB.FMHX,YM

345,t I

MIL-STD-175,dA (USAF)

ACM)R MODE MNFMON[C 00l4 IA /_hOM

8

itFMR ftA.IRB C H RA R

RA , M AOOP - -- -- - 4-

it RM A. % DDR, R -A RA O X ADOR

J~~(j(II' hce xteIIjed p~viecsoii rig am 1)cnro)perand, DOX, is ecled lio.itin p 2 wnwmit:;'Jt

DIe cointe r, t C. eisfe> RA AA 4-I 2. "~b 1) !ril I I 1 SWId 111 1'- r I.\01
R, I-2 I Tic process of the Ipv ri I ilI is Iulb lows: P ie ex ponet I (of th e ope , Inds .I ddeui Vowdi

u in exceeds 7 F!A o.i 11 vi pin 11t ouserf1 lw o&cIrs. 4) he 'un is]c-,,, in I i 0 e, n I ide I lmA
',CC Li s and Die resu It set t o /e ro I'he ope ra nd mantissas alie M L) I Li 1)1Ied , r i dt h c r-cS~ Li M. I f I / ed

and stored in RA, R,% + 1. ind R(\ 2 hc esmndilion SiiiCS, is Set ~m~don die resolt IIIRA

RA 4 1. and RAN + 2.

F IMRf+M 1

MIL-STD-1750A (USAF)

2 July 1980

REGISIER TRANSftR LSCHRIP [ON:

n z LA + E0:

P13 < 1. . EA <-.- 7FI6, MA <-- 7FFF FF FFFr16, exit. if n 7FIb and MA, = MOO;

P13 t-_1, FA -- 7F16, MA <-- 8000 00 000016, exit. if n > 7FI6 and MA O 0 MOO:

P16 <-- 1, EA <-- 0. MA <-- 0, exit, if n < 8016:

MP <-- MA x MO; (integer multiply)

NIP <-- MP shift left 1 position;

n <.-- n + 1. MPO,39 <-- 4000 00 000016, if MPO- 3 9 = 8000 00 000016;

P13 <-- 1. EA <-- 7FI, MA <-- 7FFF FF FFFF16 , exit, if n > 7F15 and MP o = 0:

P13 <-- 1, EA <-- 7F16. MA <-- 8000 00 00001, exit, if n > 7F16 and MP o = 1;

n, MP <-- normalized n, MP;

P1 6 <-- 1. EA <-- 0, MA <-- 0, if n < 8016;

EA <-- n;

MA <-- MPo39;

(CS) <-- 0010 if (RA. RA+I, RA+2) = 0:
(CS) <-- 0001 if (RA. RA+I. RA+2) < 0;
(CS) <-- 0100 if (RA, RA+I, RA+2)) 0;

REGISTERS AFFECTED: RA, RA+I, RA+2. CS, PI

115 FFMR,EFM

347

'4

MIL-STD-1750A (USAF)

2 July 1980

5.76 Single precision integer div ide with 16-bit dividend.

ADOR MODE MNEMONIC FORMAT/OPCODE

8 4 4

R DVR RA,RB I DI I RA IRB I

8 4 4

ISP DISP RA,N I D2 IRA IN-1 I 1 < N < 16

8 4 4

ISN DISN RA,N 1 D3 1RA IN-I I 1 < N < 16

8 4 4 16
D DV RA,ADDR-- - - - - - - - - - - - - - - - - - -

DX DV HA,ADDR,RX I DO I RA I RX II ADOR I

8 4 4 16

IM DVIM RA,DATA I 4A IRA 1 6 I I DATA I

DESCIMLION: The contents of register RA are divided by the Derived Operand. DO. a single precision. 2's
complement number. The result is stored in registers RA and RA + 1 such that RA stores the
single precision integer quotient and RA + 1 stores the remainder. The Condition Status. CS. is set
based on the result in RA. A fixed point overflow occurs if the divisor. 1D0, is zero, or if the
dividend is 800016 and the divisor is 'FFF 16.

Note: The sign of the non-zecro remainder is the same as the sign of the dividend.

REGISTER TRANSFER DESCRIPTION:

RA.RA+1) <-- (RA) / DO;

P14 <-- 1, if DO = 0 or (RA =8000Or and DO FFFF, 6);

(CS) <-- 0010 if (RA) =0;
(CS) (- 0001 if (RA) < 0;
(CS) <-- 0100 if (RA) > 0;

REGISTERS AFFECTED: RA, RA+1, CS. PI

DWR.IflSP.I)ISNI)Vjl)VlM 116

348

....... ..

MIL-STD-1750A (USAF)
2 July 1980

5.77 Siicpc imiicer dividc wuth 32-bit gividenA.

AOUH MODE MNEMONIC FORMAT/OPCODE

8 4 4

R DR RA,RB I D5 I RA I RB I

4 2 2 8
---- ---- --- ---- --- 12 < BR < 15

B DB BR,DSPL I1 13 IBRI1 DSPL I BR' O R -12

--- -- -- --- -- -- -- RA = R2

4 2 2 4 4
--- --- --- --- --- --- 12 (BOR < 15

BX DBX BR.RX I4 10 IBRIl 7 1 RX I 8R' O R -12
--- --- --- --- -- RA R2

8 4 4 16
D D RA,ADDR-- - - - - - - - - - - - - - - - - - -
DX D RA.ADDR,RX I D4 I RA I RX I I ADDR I

8 4 4 16

IM DIM RADATA I 4A I RA 1 5 1 1 DATA I

DI 5SCR I11TION: Trhc contents of registers RA and RA + 1. a double precision 2's complement number, are divided
by the Derived Operand, DO, a sinigle precision, 2's complement number. RA contains the MSH
of the 32-bit dividend. The result is stored in registers RA and R A+ I such that RA stores the
single precision integer quotient and R A + I stores the remainder. The Condition Status. CS, is
set based on the result in RA. A fixed point overflow occurs if the divisor equals zero or if the
magnitude of the MSH of the dividend is equal to or greater than the magnitude of the divisor
(i.e., the quotient exceeds 15 bits).

Note: The sign of the non-zero remainder is the same as that of the dividend.

REGISTER TRANSFER DESCRIPTION:

(RA,RA+I) <-- (RA,RA+l) / 00;

P14 <-- 1, if DO =0 or I(RA)I IDOl:

(CS) (-- 0010 if (RA) = 0;
(CS) <-- 0001 if (RA) < 0;
(CS; <-- 0100 if (RA) > 0;

REGISTERS AFFECTED: RA. RA+1. CS. PI

117 I)Ri,lDX.I,DlM

349i

MIL-STD-1750A (USAf)

2 July 1980

S.78 1)oublc u)iecsion intcger his__d.

ADDR MODE MNEMONIC IORMAI/OPCODL

8 4 4

R DDR RA.RB I D7 IRA I RB I

8 4 4 16

D DO RA,ADDR

DX DO RA,ADORRX I D6 I RA I RX I I ADOR I

I)I'SCRIPlIION: The contents of registers RA and RA + 1. a double precision 2's complement number. are d1vided

by the l)eried Operand. IX). a double precision 2's complement number. RA Lontains the MSIH

of the 32-bit diN idend. The quotient par t O the integer result is stored in registers RA and RA + I
(with the NISHJ i RA) and the remiaindc is lost. [he Condition Status. CS. ;s set based on dhe
results in registers RA and RA -4- I. A fixed point overflow occurs if the divisor. 1)0. isero. or if

the dividend is 800016 and the divisor is "FlHF 1 6.

REGISTER TRANSFER DESCRIPTION:

(RA,RA+I) <-- (RARA+l) / DO;

P14 <-- I,if DO = 0 or (RA = 800016 and DO FFFF 1 6 };

(CS) <-- 0010 if (RA,RA+I) = 0;
(CS) (-- 0001 if (RA,RA+I) < 0;

(CS) <-- 0100 if (RA.RA+I) > 0;

REGISTERS AFFECTED: RA, RA+I, CS, PI

35(0

.gi

MIL-STD-1750A (USAF)
2 July 1980

AIJOR IOE MNEMONIC FORMAr/OF1CODE

8 4 4

R FOR RA,RB 1 09 1 RA I RB I

4 2 2 8
---- ---- --- ---- --- 12 < BR < 15

B FOB BR,DSPL 1 2 13 IDRI1 DSPL I BR' BR -12

---- ---- --- ---- --- RA = RO

4 2 2 4 4
---- ---- ---- ---- --- 12 < BR < 15

BX FDBX BR,RX 1 4 10 IBR-I B 1 RX I BR' =BR - 12
---- ---- ---- ---- --- RA = RO

8 4 4 16
O FD RAADDR-- - - - - - - - - - - - - - - - - - -
OX FD RAADDR.RX I D8 I RA I RX II ADOR I

Dl-'SCRIIHON: '[he floating point number in registers RA and RA + 1 is divided by the floating point Derived
Operand. DO0. 'Ihe result is swurcd in register RA and RA + 1. A floating point overflow occurs if
the exponent result exceeds VF16 at any point in the calculation process. Underflow occurs if the
exponent result is less than 8016 at any point in the process. If undcrflow occurs, then the
quotient is forced to zero. A divide by zero yields a floating point overflow.

119 FDFflZ,FI)IIX.FT)

351

MIL-STD-1750A (USAF)
2 July 1980

REGISIER INANSFER DESCRIPTION:

n =EA - E0;

PI3 <-- 1. EA <-- 7F 16' MA <-- 7FF F FV16 , exit,
if MAO = MOO and (n > 7F,6 or DO = 0);

P13 <-- 1, [A <-- 7FI6, MA <-- 8000 0016, exit.
if MAO 0 MOO and (nl > 71 16 or DO = 0);

P16 <-- 1, EA <-- 0, MA <-- 0, exit, if n < 8016;

MQ <-- MA / MO;

MQ <-- MQ Shift Right Arithmetic 1 position. n <-- n + 1, it IMQO 2 1.0;

P13 <-- 1, EA <-- 7F16,, MA <-- 7FFF FF16. exit, if n > 7F16) and MQ0 = 0;

P13 <-- 1, EA <-- 7F16 , MA <-- 8000 0016, exit, if n > 7F16 and MO = 1;

EA <-- n;

MA <--- MQO
0 2 3 ;

(CS) <-- 0010 if (RA,RA+1) a 0;
(CS) <-- 0001 if (RARA+1) < 0;
(CS) <-- 0100 if (RA,RA+1) > 0;

REGISTERS AFFECTED: RA. RA+1, CS, P1

FDRY1)11,1:I)r;X,FD P0

352

MIL-STD-1750A (USAF)

2 July 1980

5.80) F' ,t'dcd nrc IM()in tin n, j point divide.

ADDR NEME EONIC FOlMATIOPCODE

8 4 4

R ElDR RARB I DB I RA I RB I

8 4 4 16
D E F D R A ,A D D R
DX EFD RA,ADDR,RX I DA I RA I RX I I ADDR I

I)-S(R IPlION: 'he contents of registers RA. RA + 1, and RA + 2 are extended precision floating point divided by
the extended precision floating point I)erivcd Operand, DO. he result is stored in register RA,
RA+ I, and RA+2. A floating point overflow occurs if the exponent result exceeds F6 at any
point in the calculation process. Underflow oc.curs if the exponent result is less than 801(, at any
point in the process. If underflow occurs, then the quotient is forced to zero. A divide by zero
yields a floating point overflow.

REGISTER TRANSFER DESCRIPTION:

n = EA EO;

PI3 <-- 1. EA <-- 7F16 , MA <-- 7FFF FF FFFF 16 . exit,
if MA0 = MO O and (n > 7F1i or DO = 01;

P13 <-- 1, EA <-- 7F1 6 , MA <-- 8000 00 000016, exit,

if MA0 9 MOO and (n > 7F16 or DO = 0):

P16 <-- 1. EA <-- 0, MA <-- 0. exit, if n (8016;

MQ <-- MA / MO;

MQ <-- MQ Shift Right Arithmetic I position, n <-- n + 1, if JIQI 1 1.0;

PI 3 <-- 1, EA <-- 7F16 , MA <-- 7FFF FF FFFF16, exit, if n > 7F 16 and MO0 = 0;

PI3 <-- 1. EA <-- 7F 16. MA <-- 8000 00 000016. exit, if n > 7F 16 and MQ0 a 1;

EA <-- n;

MA <-- MQO. 39;

(CS) <-- 0010 if (RA, RA+1, RA+2) = 0;
(CS) <-- 0001 if (RA, RA+1, RA+2) < 0;
(CS) <-- 0100 if (RA, RA+1, RA+2) > 0;

REGISTERS AFFECTED: RA. RA+I, RA+2. CS, PT

121 FFI)R,YIFD

4 353t 4

, ° . .. --_ ... -• ., , _.Z , ,., ' -II] i ' I

MIt--SI -1750A (USA[)
? July 1980

S.81 l ul ielo gial OR.

ADDR MOO MNEMONIC LQRMAT/OPCOI)[

8 4 4

f ORR RA.RB I F1 I PA I RH I

4 2 2 8
---------------------- 12 B , 15

B ORB BRDSPL) 3 10 JBRI DSPL j BR' FBR - 12
---------------------- R A = R 2

4 2 2 4 4
..........- - 12 K BR , 15

BX ORBX BRRX 1 4 10 IBRI1 F I RX ; BR' H P- 12
RA R2

8 4 4 16
D OR RAADDR
Dx OR RAADDR.RX I t0 I RA I RX I I ADDR I

8 4 4 16

IM ORIM RA,OATA t 4A I RA 1 8 1 1 DATA i

I)WSCR IPTION: The Derived Operand, DO, is bit-by-bit inclusively ORed with the contents of RA. The result is
stored in register RA. The condition status, CS, is set based on the result in register RA.

REGISTER TRANSFER DESCRIPTION:

(RA) <-- (RA) v DO;

(CS) <-- 0010 if (RA) = 0;
(CS) <-- 0001 if (RA) < 0;
(CS) <-- 0100 if (RA) > 0;

REGISTERS AFFECTED: RA, CS

OR R.OR IIOR IE\,ORR IM I

II

MIL-STD-17bOA (USAF)

2 July 19B0

ADDR MOM 1F 1XMON fORMAIl/OPCOQ0E

8 4 4

R ANDR RA,RB E3 RA RB

4 2 2 8
---------. ------------ 12 BR < 15

B ANDB BR,DSPL 1 3 ji JOR'I DSPL I BR' BR 12
-- --- -- --- ---- -- ---- -- RA R2

4 2 2 4 4

----- -- --------- -2 B- 1 b

BX ANDX BR,RX j 4 10 LBRj E I RX I BR' BR- 12
-----. -. ----. I..-- .--- .-- RA R2

8 4 4 16
D AND RA,ADDR

ex AND RA.ADOR,RX 1 [2 IRA I RX I I ADOR I

8 4 4 16

IM ANDM RA,DATA I 4A I RA 1 7 I I DATA I

IDESCRIfIrION: lhc Derived Operand, DO, is bit-by-bit ANI)cd with the conlents of register RA. 'thc result is

stored in register RA. The condition status, CS, is set based un thc result in register RA.

RI TR rANSFER DESCRIfi IOQ[:

(RA) <-- (RA) t DO;

(CS) <-- 0010 if (RA) = 0;
(CS) <-- 00 if (RA) < 0:

(CS) <-- 0100 if (RA) > 0;

REGISTERS AFFECTED: RA, CS

123 ANDi,ANDBANI)X,AN),ANI)M

355

4 _ 1

iib.

MIL-STD-1750A (USAF)
2 July 1980

5.83 F~xclusive logical OR.

ADOR MODE MNEMONIC FORMAT/OPCODE

8 4 4

R XORR RA.RB I E5 I RA I RB I

8 4 4 16
0 XOR RA,ADDR-- - - - - - - - - - - - - - - - - - -
DX XOR RAADDR,RX I E4 I RA I RX I I ADOR I

a 4 4 16

IM XORM RA,DATA I 4A IRA 19 I DATA

DESCRIVP'ON: T[he Derived Operand, DO, is bit-by-bit exclusively ORed with tihe contents of RA.'[be result is

stored in RA. Tbe condition status, CS, is sct based on the result in RA.

REGISTER TRANSFER DESCRIPTION:

(RA) <-- (RA) S DO;

(CS) <-- 0010 if (RA) = 0;
(CS) <-- 0001 if (RA) < 0;
(CS) <-- 0100 if (RA) > 0;

REGISTERS AFFECTEDQ: RA, CS

XORR,?XOR.XORM 124

356

MIL-STD-1750A (USAF)

2 July 1980

5.84 1 oi icaiI NANI.

ADOR MODE M4NEMONIC FOIRiAf/OPCODE

8 4 4

R NR RA.RS E7 IRA I R6

8 4 4 16
o N RA.ADDR-- - - - - - - - - - - - - - - - - - -
Ox N RA.ADDR.RX I E6 I RA I RX II ADOR I

8 4 4 18

IN NIM RA,DATA I 4A jRA I B II DATA

I)ESCRIIPTION: Thc Derived Operand, DO, is bit-by-bit logically NANL~ed with the contents of register RA.'The
result is stored in RA.

Note: Thei logical NOT of a register can bc attained with a NR instruction with RA =RB.

REGISTER TRANSFER DESCRIPTION:

(RA) <-- (RA) t DO;

(CS) <-- 0010 if' (RA) = 0;
(CS) <-- 0001 if (RA) < 0;
(CS) <-- 0100 i f (RA) > 0:

4 1REGISTERS AFFECTED: RA. CS

125 NR,NN IM

357

4

MIL-STD-1750A (USAF)
2 July 1980

5.X5 Convert floating DOint to 16-bit integer.

ADOR QDi MNEMONIC FORMAT/OPCODE

8 4 4

R FIX RA,RB I E8 IRA I RB I

ISCRIPIIION: Thc integer portion of the floating point Derived Operand, DO (i.e., the contents of registers RB
and RI1+ 1), is stored into register RA. If the actual value of the DO floating point exponent is
greater than 0 16. then RA remains unchanged and a fixed point overflow occurs. Tle condition
status, CS, is set based on the result in RA.

Note: The algorithm truncates toward zero.

REGISTER TRANSFER DESCRIPTION:

P14 <-- 1, exit, if EO > OF16 ;

(RA) <-- Integer portion of DO;

(CS) <-- 0010 if (RA) = 0;
(CS) <-- 0001 if (RA) < 0;
(CS) <-- 0100 if (RA) > 0;

REGISTERS AFFECTED: RA, CS. PI

FIX 126

358

MIL-SMf-1750A (USAF)
2 July 1980

5.86 Cons crt 16-hit integer to floaqlQi.

ADOR MODE MNEMONIC FOR4ATOPODE

8 4 4

R FIT RA,RR E9 gRA IRB

DESCRIPTION: The integerlDerived Operand, D)O(i.., Lhc contents of register R 1), is converted to Singlc
Precision floating point format and storcd in register RA and RA + 1. The condition status, CS. is
set based on thc results in RA and RA + 1. The operation proccss is as follows: The exponent is
initially considered to be OF16. The integer v'alue in Ril is normalizcd, i.e., thc number is left
shifted and the exponent decrcmentcd for e.c . hift until thc sign bit and tcnx S r
unequal, and the exponent and mantissa stored in thc propcr fields of RA and RA + 1.

Note: RA may equal RB.

An intcger 7ero, 000016. is conv'erted to a floating point zero, 0000 000016.

REGISTER TRANSFER DESCRIPTION:

EA <-- 0, MA <-- 0, exit, if (RB) 30;

EA <-- OF 18;

MA <-- (RB);

EA. MA <-- normalize EA, MA;

(CS) <-- 0010 if (RA,RA+1) = 0;
(CS) <-- 0001 if (RA,RA+1) < 0;
(CS) <-- 0100 if (RA,RA+1) > 0:

REGISTERS AFFECTED: RA, RA+1, CS

127 FIX

4 359

MIL-SID- 1750A (USAF)
2 July 1980

5.87 Conmcrt extended precision floating Voint to 32-hit integer.

ADOR MODE MNEMONU, FORMAT/OPCODE

8 4 4

R EFIX RA,RB I EA IRA IRBI

IWl SCRI'lION: The integer portion of thc floating point l1crived Operand, DO (ice., the contents of registers RB,
RB± 1. and R13+2). is stored into register RA and RA+ 1. If the actual value of tie 1)0 floating
point exponent is grcatcr than 1lF16 then RA and RA + I remain unchanged and a fixed point
overflow occurs. 'The condition status, CS, is set based on die result in RA and RA + I.

Note: The algorithm truncates toward zero.

REGISTER TRANSFER DESCRIPTION:

P14 <-- 1, exit, if EO > IF 16;

(RA,RA+l) <-- Integer portion of DO;

(CS) <-- 0010 if (RA,RA+1) = 0;
(CS) <-- 0001 if (RA,RA+1) < 0;
(CS) <-- 0100 if (RA,RA+1) > 0;

REG15TERS AFFECTED: RA, RA+1, CS, PI

EFIX 128

360

MIL-STD-1750A (USAF)

2 July 1980

5 88 Con r 3? hit i'eer n to __end.lpcjsjIn Iloavin. Point.

ADDR MODE MNEMONIC ORMAT/OPCODE

8 4 4

R EFLT RARB I EB I RA I RB I

I)[SCR I P IION: lhe double prockion integer)rived Operand.)O (i.e., the contents of registers R1B and
RII+ 1). is conveted to -xtended Precision floating point format and stored in register RA,

RA +]. and RA + 2. 'lhe condition status. CS. is set based on the result in RA, RA + 1, and
RA + 2. '1he operat ion process is as follows: Ihe exponent is initially considered to be IF16. The
integer value in R11. RB + I is nonnalized. i.e., the number is left shifted and the exponent
decremented for each shift until the sign bit and the next MSB arc unequal, and the exponent and
mantissa stored in the proper field of RA, RA + 1, and RA + 2.

__.ote: RA may equal RB.

An integer 7eIo, 0000 000016, is converted to an extended floating point zero, 0000 0000 000016.

REGISTER TRANSFER DESCRIPTION:

EA <-- 0, MA<-- 0, exit, if (RB.RB+I) = 0;

EA <-- IF16 , MA<-- (RB,RB+I);

EA, MA <-- normalized EA, MA;

(CS) <-- 0010 if (RA, RA+I, RA+2) = 0:

(CS) <-- 0001 if (RA, RA+I, RA+2) < 0;
(CS) <-- 0100 if (RA. RA+I, RA+2) > 0;

REGISTERS AFFECTED: RA, RA+I, RA+2, CS

12
361

-o

,W7

W1 -SID)- 1750A (USAF)
2JOlY 1980

I, \L if~ b~tc\ in ic-itctr.

AIODR MODE MNEMONIC fORMAJ/OPCOQDE

8 4 4

SXBR RA I C IRA 10

I i S(~ I ON:l1c tupper b~tc of rcp~ter k N is exe-hang, d with the 'ocr byte of regi-tcr RA Viic C'S i -set

bawed on the result in icgistcr RA.

1 11t~t r RANSFER OESCRtIPTION:

(PIA), kRA 8-t7

(CS) <-- 0010 if (RA) = 0:
('-S) <-- 0001 if (RA) < 0;
(CS) <-- 0100 if (RA) > 0:

RfG1Sff[R AFFECTED): RA, CS

X in

MIL-SiD-1750A (US .I

2 July 1980

90) I A1IA(.1 1 - (fik li stZ ers.

ADR MODE MNLM ONC !(,!?MA I/OPCODF

8 4 4

R XWR RA,RB I ED I RA I Rb I

i)FSCRIPI ION: Ihe content of register RA are exchanged with the conlents r megister RIB T11e CS is set based
On the result in register RA

REGISTER TR!ANSFER DESCRIPTION:

(RA) <--) (RB);

(CS) <-- 0010 if (RA) = 0;
(CS) <-- 0001 if (RA) < 0;
(CS) <-- 0100 if (RA)) 0;

REGISTERS AFFECTED: RA, RB. CS

131 XWR

36 i

MIL-STD-1750A (USAF)

2 July 1980

5.91 Single precision compiare.

ADDR MODE MNEMONIC FORMAT OPCODL

8 4 4

R CR RA,R8 F1 RA IRB

4 2 2 8
---- ---- --- ---- --- 12 < BR < 15

B CB BR.DSPL 1 3 12 IBRI1 DSPL I BR' BR -12

---- ---- --- ---- --- RA = R2

4 2 2 4 4
---- ---- ---- ---- --- 12 < BR < 15

BX CBX BR,RX 1 4 10 IBRI1 C I RX I BR' BR - 12
--- --- --- --- --- --- RA = R2

8 4 4

ISP CISP RA,N I F2 IRA IN-i I 1 <j N < 16

8 4 4

ISN CISM RA,N I F3 IRA IN-I I 1 < N <. 16

8 4 4 16
D C RA.ADDR-- - - - - - - - - - - - - - - - - - -

DX C RA,ADDR,RX I FO R A I RX II ADDR

8 4 4 16

IM CIM RA,DATA I 4A I RA IA I I DATA I

DESCRIPTION: The single precision Derived Operand, 1)0. is compared to the contents of RA. Then, the
Condition Status, CS, is set based on whether the content-, of RA is less than, equal to, or greater
than thc DO. The contents of RA arc unchanged.

REGISTER TRANSFER DESCRIPTION:

(RA) : DO;

(CS) <-- 0010 if (RA) = DO;
(CS) <-- 0001 if (RA) < DO;
(CS) <-- 0100 if (RA) > DO;

REGISTERS AFFECTED: CS

CR.ICIX.CISP.ClSN,C.CI M 1312

364

MIL-SII)-1750A (USAF)
2 July 1980

ADDH MODL MNLMONIC fOIe.4Am OPCQDE

8 4 4 16
D CBL RA.ADDR

DX CBL RA.ADDR.RX I r4 I RA I RX I I ADOR I

I)I-SCR IPTION: Ihe contents of register RA are compared to two different sixteen bit derived operands, DOi and
1)02. The derived operands, I1)1 and 1)02 arc located at DA and I)A + 1. respectively, and their
values are defined such that 1)01 < 1)02. le CS is set based on the result,. If the values for 1)01
and 1)02 are defined incorrectly (that is, I)0l > 1)02). then CS is set to 1000

REGISTER TRANSFER DESCRIPTION:

(CS) <-- 1000 if DO > 002, exit;

(CS) <-- 0001 if (RA) < 001;

(CS) <-- 0010 if DO < (RA) 002;

(CS) <-- 0100 if (RA) > 002;

REGISTERS AFFECTED: CS

133 CHI.

365

MIL-STD-1750A (UJSAF)
2 July 1980

5.93 !)uhlc recision comlparc.

ADOR MODE MNEMONIC FORMAT/OPCODE

8 4 4

R OCR RA.RB F7 R A I RB

8 4 4 16
0 DC RAADDR-- - - - - - - - - - - - - - - - - - -
DX DC RA,ADDR,RX I F6 IRA I RX II ADDR

Df:hSCI? I PTION: Thc double precision Derived Operand, DO.) is compared to the contents of registers RA and
ItA + I where RA contains the MS1 I of a double precision word. Thcn, the Condition Status. CS,
is set based on whether thc contents of RA, RA + I is iess than, equal to, or greater than the DO0
The contents of RA and RA + Iare unchanged.

REGISTER TRANSFELR DESCRIPTION:

(RA,RA+1) :DO;

(CS) <-- 0010 if (RA,RA'-1) = Du;
(CS) <-- 0001 if (RA,RA+l) < !00;
(CS) <-- 0100 if (RA,RA+l)) D(,

REGISTERS AFFECTED: CS

I)CR.I)C 1314

366

MIL-STD-1750A (USAF)

2 July 1980

5.94 'o;lotj 1)1)1t €ol)are.

ADDR MODE MNEMONIC IOtAT/OPCOE

8 4 4

R FCR RARB I F9 I RA I RB I

4 2 2 8
---------------------- 12 < B R < 15

B FCB BR,DSPL 1 3 13 IBR'I DSPL I BR' BR- 12
---------------------- RA RO

4 2 2 4 4
--------------------- - 12 . BR < 16

BX FCBX BR,RX I 4 10 IBR'I 0 I RX I BR' = BR - 12
------------------ RA RO

8 4 4 16
0 FC RA,ADDR
oX FC RA.ADDR.RX I F8 I RA I RX I I ADDR I

DESCRIP'I ION: The floating point number in registers RA and RA+ 1 is compared to the floating point Derived
Operand, DO. Iben, the Condition Status, CS. is set based on whether the contents of RA,
RA + 1 is less than. equal to, or greater than the DO. 'Ibc contents of RA and RA + I are
unchanged.

No=e: This instruction does not cause an overflow to occur.

REGISTER TRAFER DESCRIPTION:

(RA.RA+I) : 00;

(CS) <-- 0010 if (RA,RA+1) = 0;
(CS) (-- 0001 if (RA.RA+I) < 0;
(CS) <-- 0100 if (RA,RA+I) > 0;

REGISTERS AFFECTED: CS

135 F--.R,FCB,FCRX,FC

4 16'

MIL-STD-1750A (USAF)
2 July 1980

5.95 I ~xtended precisio)n floating point compare.

AGOR MODE MNEMONIC FORMAT/OPCODE

8 4 4

R EFCR RA,RB I F8 I RA I RBI

8 4 4 16
D EFC RAADDR-- - - - - - - - - - - - - - - - - - -
DX EFC RA,ADDR.RX I FA I RA IRX I I ADDR I

DE-SCR I P ON: The extended precision floating Dcrivcd Operand, T). is compared to the contents of registers
RA, RA + 1, and RA + 2 where RA contains thc most significant 16-hits of the extended precision
floating point word.' The condition status, CS, is set bascd on whether the contents of RA. RA + 1,
and RA +2 are less than, equal to or greater than the DO. Tne contents of RA, RA + 1, and
RA + 2 are unchanged.

Note: '[his instruction does not cause overflow to occur.

REGISTER TRANSFER DESCRIPTION:

(RA, RA+1, RA+2) : DO;

(CS) <-- 0010 if (RA, RA+1. RA+2) - DO:
(CS) <-- 0001 if (RA, RA+1, RA+2) < DO;
(CS) <-- 0100 if (RA, RA+1. RA+2) > DO;

REGISTERS AFFECTED: CS

EI1-CR,FFC 136

368

MIL-STO-1750A (USAF)

2 July 1980

5.90j No ojjcrafio.

ADDR MODE MNEMONIC

8 4 4

S NOP I FF 1 0 1 o 1

I)M'SCRIPIION: No opcration is performed.

REGISTER TRANSFER DESCRIPTION: None

REGISTERS AFFECTED: None

137 NOP

369

$ MIL-STD-1750A (USAF)
2 July 1980

A[DR tjODL MNEMONIC F ORMA? /OPCODE

5 4 4

S BPT I FE F 1F

I A SCR I P' ON: This instruerlon is tvpicajllv used for itting the processor du iig mrn~iteinfce and (tigostic
plroccdLueS Ahen the llunifenaflue A(fln'OIC v, conncxted to the systemn. If the con[ole - not

conneccted. thhintuc is treatcd as a : OP I ,ee page 137). Restriting the proM-ciscr after a

[MIT canlol 1c .Ione)h. the mainttiaricc console or the power onl sequciec.

REGISTER TRANSFER DESCRIPTIOQN: None

REGISTERS A~FFECTED: None

Un. 138

370

MI1L-STD-1750A (USAf)
2 July 1q80

Custodian: Preparing activity:
Air Force -11 Air Force -1

Reviewing activity: Project IPSC-FI42
Air Force -02

139

371

14IL-STD-1760A (USAF)
2 July 1980

INDEX

A 59

AB 89

ABS 92

AOX 89

AIN 89

AISP 89

AND 123

AO 123

ANON 123

ANDR 123

AMOK 123

AR 89

SEX 82

BEZ 50

561 66

BGT 84

OLE 83

BIT 61

DM2 66

OPT 138

OR 59

C 132

Ce 132

COL 133

Cox 132

C. 1 31

C 114 132

140

372

MIL-SID-1750A (USAF)
2 July 1980

CISN 132

,SP 132

CLC 30

CLUR 29

CO 30

CR 132

D 117

DA 94

DABS 93

DAR 94

DB 117

DBX 117

DC 134

OCR 134

DO 118

DDR 118

DECM 101

DIN 117

DISN 116

DISP 116

DL 72

DLB 72

OLBX 72

DLI 72

DLR 72

DM 111

DMAD 30

DMAE 30

DMR 111

ONEG 103

DR 117

DS 104

OSAR 53

141

373

'.,

M1L-STD-1750A (USAF)
2 July 1980

OSBI 29

OSCR 54

OSIC 48

OSLL 45

DSLR 52

DSR 104

OSRA 47

DSRL 46

DST 81

OSTB 81

DlST1 81

DITX 81

DSUR 30

DV 116

DVIM 116

DVR 116

EFA 97

EFAR 97

EFC 136

EFCR 136

EtO 121

((DR 121

(FIX 128

E F1 74

1 F!.T 129

((14 114

f(FMR 114

((S 107

F iSP 107

EiST 84

f N81 29

E SUR 30

142

374

MltSD-1750A (USAF)
2 July 1980

I A 95

F AB 95

FABX 95

FAR 9b

MC 135

FCO 135

ICB8 1351
)CB 135

t D 119

119

Fmh 112

f NFG 108

F S 105

F$8 106

I'St 105

30

MIL-SrD-1750A (USAF)
2 July 1980

LI 70

LOX 70

Li 1 10

L IM 70

ISN M

L ISP 10

INB /6

LtiS 76

LM 73

IMP 31

LR 70

LST 8I

S1 61

tUB 75

LU5 15

M Io

MB I10

SmBX II0

4 MISM 109

41SP I09

#40,v q 0

MPfN 0

MR 16

MS 109

1,SiM 104

MSR 109

.4n 2

A0AIOO 577 AERONAUTICAL SYSTEMS DIV WRIGHT-PATTERSON AFB OH F/6 1/3 -

AFSC STANDARDIZATION CONFERENCE, 1553, 1589, 1750, 1760. ADA, N--TC(U)
NOV 80 E C GANGH, S E SMITH

UNCLASSIFIFD ASD-TR-80-OSO-VOL-2 Nt;IIIIIIIIIhil
mlllllllllllll
""IIIII"""II

I hllllllllllll
EEIIIIIIIIIEEE
EllllllllihmhhmT

hhhhhhhhThL

MiL STD-1750A (USAF)
2 July 1980

MOP 137

MRa 125

00 30

OR 122

ORB 122

ORBX 122

ORIN 122

ORR 122

OTA 30

015 31

P1 !9

P0 29

POPM 77

PSHM 87

R8 35

RBI 36

ABA 35

RcFR 30

RCS 31

RDI 31

RDOR 31

RICI 31

RIC2 31

RIPR 32

RMPS 31

AMK 30

AMP 32

AidS 30

ROPA 32

API 29

RPIR 30

145 '
3 77

M It - If)-I 750A (LJSAf)

2 Ju y 1980

,15W .10

lVHR 19

;[I 14

FiNC 44

t R .19

':,MK Th

rj -,a

SJS

(Fil F

r411-SID-1750A (USAF)
2 July 1980

srsi 8g

SVOR 38

AN J0

AS 30

8 36

BHN 31

81 30

IBR 16

Bss 3 1

TPlO 31

TSB 37

IVHR 40

1/10 13

WIPR 3 1

WOPR 31

11SW 29

ABR 00

XOR 1?4

(ORM !14

40RR ..Z4

-WR III

o'1A

MIL-STD-1760 (Draft)
May 1980

MILITARY STANDARD

STANDARD STORE INTERFACE,

AIRCRAFT/STORES ELECTRICAL

INTERFACE DEFINITION

181

4 MIL-STD-1760 (Draft)

DEPARTMENT OF THE AIR FORCE

WASHINCTON D.C. 20330

MIL-STD-1760 (Draft) STANDARD STORES INTERFACE,
AIRCRAFT/STORES ELECTRICAL INTERFACE DEFINITION

1. This Military Standard has been approved for use by all Departments
and Agencies of the Department of Defense.

2. Recommended corrections, additions, or deletions should be addresseG
to U.S. Air Force Armament Laboratory, Attention: AFATL/DLJA, Eglin Air
Force Base, Florida 32542

1-

FOREWORD

I

1. Prior to this standard, an aircraft and the stores which it carried
were typically developed independently of each other or were developed
exclusively for each other. The usual results were new aircraft/store

electrical interface requirements and the general proliferation of overall
store interface requirements. The lack of standards within DoD for an
aircraft/store electrical interface led to low levels of interoperability

and costly aircraft modifications to achieve required store utilization

flexibility. The trend in store technology toward more complex store
functions which require increasing amounts of avionics data from aircraft

systems was predicted to produce insurmountable aircraft/sture interface

problems.

2. This standard contains a solution to aircraft/store interface imple-

mentation proliferation by specifying one standard electrical interface

for all future aircraft and stores. The interface contained herein is

based on recognized trends in stores management systems which predict

the use of serial digital transmission for control, monitor, and release

signals to the store station. Application of this standard to new air-

craft and stores will serve to reduce and stabilize the number and variety

of signals required at the aircraft/store interface, minimize the impact

of new stores on future stores management systems, and increase store inter-

operability within the services and NATO.

3. After initial implementation of the standard, there will be a period

when both standard and non-standard aircraft and stores will coexist in

the inventory. Therefore, in order to be compatible, some development

aircraft and stores may be built with both the standard and non-standard

interfaces.

4. The format of this standard is aligned to aircraft/store interfa,

control documents used by industry to describe aircraft/store tltaf

requirements to DoD.

5. Unless otherwise specified, this standard onif %..,lear

System 2, Digital Interface Requirements do im -Lb, under

development with the Department f i,-,, t.Al Laboratories)

and appropriate DoD agencies.

if

~. i,

TABLE OF CONTENTS

Paragraph Page

1. INTRODUCTION I

2. REFERENCED DOCUMENTS I

3. DEFINITIONS 3

4. GE1ERAL STATEMENTS OF REQUIREMENTS 4
4.1 Introduction
4.2 Standard Interface System
4.2.1 Digital Multiplex Data Buses
4.2.2 Aircraft Power
4.2.3 High Bandwidth Signals
4.2.4 Store Address Lines.....
4.3 Store Implications

4.4 Stores Management Syster Ai 6

5. DETAILED STATFiM N I': ktUNTS 6
5.1 In.rod, 6
5.2 F -* ,L .lce Definition 8
5.2.1 ',,,tiplex Data Bus 11
5.2.1.1 . . O peration 11
5.2.1.1. ,,daddress/Mode 11
5.2.1 Mode Control 11

Logical Interface Code 11
. 1.2 Information Transfer Modes. Ii

Store On Data Bus 13
5.2.1.3 Aircraft On Data Bus 13
5.2.1.4 Electrical Interface Requirement 13
5.2.1.5 Data Bus Requirement 13
5.2.1.6 Electromagnetic Compatibility 13
5.2.2 Fiber Optics Data Bus 13
5.2.3 High Bandwidth Signals 13
5.2.3.1 Video. 13
5.2.3.2 Time Correlation Pulse (TCP). 14
5.2.3.3 Radio Frequency 14
5.2.4 Digital Address Lines 14
5.2.5 Aircraft Power 14
5.2.5.1 DC Power 14
5.2.5.1.1 Voltage 14

5.2.5.1.2 Over-voltage 14
5.2.5.1.3 Current 15
5.2.5.1.3.1 Power 1, Power 2, and Emergency

Jettison Lines 15
5.2.5.1.3.2 Power 3 Lines 15
5.2.5.1.3.3 Initial Store Power. 15
5.2.5.1.4 Isolation 15

iii

384

TA' . kotiud

Paragraph Page

5. A.I~Keturn Lines 15
Rise Time. 15
AC Power 15

-Voltage. 15
Over-voltage 15

).2.5.2.3 Current. 15
5.2.5.2.3.1 SSI Connector. 15
5.2.5.2.3.2 Auxiliary Power Connector. 15
5.2.5.2.4 Isolation. 15
5.3 Physical Interface Definition 16
5.3.1 Wiring and Cablingl
5.3.2 Wiring and Shielding Termination

and Grounding. 16
5.3.3 Electromagnetic Interference. 16
5.3.4 Static Discharge Survival 16
5.3.5 Environmental Factors. 16
5.3.6 Store Receptacle Connector

orientation and Mounting. 16
5.3.6.1 Top Mounting 16
5.3.6.2 Rear Mounting. 16
5.3.6.3 Mounting Alignment and Integrity-............16
5.3.6.4 Receptacle Position. 18
5.3.7 Insert Arrangement 18
5.3.8 Exposed Receptacle (separation) 18
5.4 Logical Interface Definition 18

FIGURES

Figure Page

1. Aircraft/Store Electrical Interface. 5

2. Typical Store/Data Bus Electronics

Functional Diagram. 7

3a. Electrical Signal Set - SSI Connector. 9

3b. Electrical Signal Set - Auxiliary Power

Connector. 10

4. Standard Interf ace Employment Architecture . 12

5. Master Keyway Position 17

6a. SSI Connector - insert arrangement. 19

6b. Auxiliary Power Connector - Insert

arrangement 20

iv

385

Table Pave

i Electri-a. Ignals Stts .. 21

S"': Cnw ,to. . .. 2,

Auxiliarv Power Connector

APPENDIX A

Paragraph Page

6. ELECTRICAL CONNECTOR REQUIREMENTS A-.
6.1 Introductior A-)
6.2 Definitions A-1
6.2.1 Electrical Connector Terminology...... ... A-I
6.2.2 Requirements A-I
6.3 Genera Requirements A-1
6.3.1 Design and Construction A-i
6.3.2 Types A-i
6.3.3 Finish A-i
6.3.4 Interchangeability and Intermateability . A-2
6.3.5 Pin Protection A-2
6.3.6 Coupling A-2
6.3.6.1 Ease of Coupling A-2
6.3.7 Engagement and Locking A-2
6.3.8 Polarization of Connector Shells A-2
6.3.8.1 Pin to Pin Mating Prevention A-2
6.3.9 Electrical Continuity A-2
6.3.10 EMI Grounding Spring Fingers A-2
6.3.11 Lanyard A-3
6.3.11.1 Lanyard Retention....... A-3
6.3.11.2 Lanyard Release Force A-3
6.3.12 Shielding Braid Termination A-3
6.3.13 Water Sealing A-3
6.3.14 Electrical Contacts A-3
6.3.14.1 Contact Sizes A-3
6.3.14.2 Insert Arrangement A-3
6.3.14.3 Connector Shell Size A-3
6.3.15 EMI Effectiveness A-3
6.3.15.1 EMP Susceptibility -4
6.3.16 Receptacle Mounting A-4
6.3.16.1 Store Mounting A-4

V

386

APPENDIX A. (Continued)

Faragrap) Page

b.3.16,-- Aircraft Mounting. . A-4
6.!. Detailed Requirements. A-4
6.4.1 Materials. A-4
6.4.1.1 Metals A-4.
6.4.1.2 Dissimilar Metals and Compatible

Couples. A-4
6.4.1.3 Hydrolytic Stability A-5
6.4.2 Components A-5
6.4.2.1 Class F. A-5
6.4.2.2 Fungus Resistant A-5 1
6.4.2.3 Nonmagnetic Material~s.. A-5
6.4.3 Insert Design A-5

6.4.3.1 Environment Resisting Classes. A-5
6.4.4 Mating Seal. A-5
b.4.5 Shell....................A-6
6.4.5.1 Spring Fingers A-6
6.4.5.2 Jam-Nut Mounting Receptacles A-6
6.4.6 Lubrication. A-b

b47Plating. A-6
6.4.7.1 Contacts (Crimp)..............A-6
6.4.7.2 Shell and Accessorv Hardware A-6
6.4.8 Contact Engagement and Separation

Force. A-7
6.4.9 Thermal Shock. A-7
6.4.10 Coupling Torque. A-7
6.4.11 Durability A-7
6.4.12 Altitude Immnersion A-8
6.4.13 Insulation Resistance. A-8
6.4.13.1 Insulation Resistance at Ambient

Temperature A-8
6.4.13.2 Insulation Resistance at Elevated

Temperature. A-8
6.4.14 Dielectric Withstanding Voltage. A-8
6.4.15 Insert Retention A-8
6.4.16 Salt Spray A-8
6.4.17 Electrical Engagement. A-8
6.4.18 External Bending Moment. A-8
6.4.19 Contact Retention. A-8
6.4.20 Altitude - Low Temperature A-8
6.4.21 Vibration. A-9
6.4.22 Shock. A-9
6.4.23 Shell-to-Shell Conductivity.A-9
6.4.24 Humidity A-9
6.4.25 Shell Spring Finger Forces A-9
6.4.26 Ozone Exposure A-9
6.4.27 Fluid Immersion. A-9

vi

387

APPENDIX A (Continued)

Paragraph Page

6.4.28 Retention System Fluid Immersion A-9

6.4.29 Pin Contact Stability. A-10 1
6.4.30 Contact Walkout. A-10
6.4.31 Power Contacts A-10
6.4.31.1 Temperature Life with Contact'Loading. . .A-10

6.4.31.2 Temperature Life.
6.4.32 Electrolytic Erosion A-10
6.4.33 Firewall A-i0
6.4.34 Coaxial and Fiber Optics Contac t s.. A-10
6.4.35 Marking. A-11
6.4.35.1 Contact Location Identification.......A-li
6.4.36 Workmanship. A-il

FIGURES

Figure Page

1. Receptacle, Wall Mount

(Crimp) (Pin Insert) A-12

2. Receptacle, Box (Crimp) (Socket Insert) A-13

3. Plug-Straight-Crimp, Pin & Socket A-14

4. Receptacle - Plug, Insert Detail

(Style S&P). A-15

TABLE S

Table Page

I. Deleted

Ii. EMI Shielding Effectiveness. A-4

III. Contact Engagement and Separation Forces ... A-7

IV. Coupling Torque. A-7

V. Shell Spring Finger Forces A-9

VI. Pin Contact Stability. A-10

vii

388

1. INTRODUCTION

1.1 Scope. This standard establishes the definition for development,
application, and control of the electrical interface between stores and
their carrying aircraft. It encompasses all aircraft-to-store and store-
to-aircraft signal functions, electrical characteristics, and electrical
connector components of the interface. It implies, but does not quantify,
aircraft/store electrical systems to meet the interface defined herein.
It is inte-ided that all aircraft stores which require any electrical inter-
face shall use the same functional interface and the same physical connectors.
This document does not include the design of the physical connectors, but
has design guides for them. Stores which require a limited subset of the
functions will contain the necessary electronics to accept those portions
of the functional interface signals required without aircraft hardware
modifications. This standard does not imply that all aircraft can carry
all stores on all stations. Factors such as physical and mech'nical limi-
tations, and electrical power must be considered.

1.2 Purpose. The purpose of this interface standard is threefold: (1)
Define specific electrical and optical characteristics of power and data
signals to be provided at the interface, (2) Provide guidelines for inter-
face connectors, (3) Define the logical portion of the interface which
includes the interface message traffic and information coding formats (TBD).

1.3 Classification. This standard covers all aircraft stores that require
an electrical interface. This coverage encompasses both expendable and
non-expendable stores as defined in NATO AAP-6. Non-expendable stores in-
clude suspension equipment as defined in NATO AAP-6.

1.4 Effectivity Data. Upon date of implementation, this standard is
effective with stores and aircraft in concept development stages and all
future aircraft and all store development within the classification data
provided above.

2. REFERENCED DOCUMENTS

2.1 Issues of Documents. The following documents of the issue in effect
on date of invitation for bid or request for proposal form a part of this
standard to the extent specified herein. In the event of conflict between
the documents referenced herein and the contents of this standard, the
contents of this standard shall be considered a superseding requirement.

SPECIFICATIONS

MILITARY: MIL-E-6051 - Electromagnetic Comp Reqmts System

MIL-W-5088 - Wiring, Aerospace Vehicle

MIL-A-8591 - Airborne Stores, Associated Suspension
Lugs, and Aircraft Store Interface
(Carriage Phaae)

1

389

- ~ ~ ~ L I - .- -- --

MIL-C-38999 - Connectors, Electrical.

MIL-C-27599 - Connector, Electrical, Minature,
Quick Disconnect (For Weapons Systems)
Established Reliability.

STANDARDS

MILITARY: MIL-STD-461 - Electromagnetic Interference Character-
istics, Requirements for Equipment.

MIL-STD-462 - Electromagnetic Interference Character-
istics, Measurement of.

MIL-STD-704 - Aircraft Electric Power Characteristics.

HIL-STD-1553 - Aircraft Internal Time Division Command/
Response Multiplex Data Bus.

HANDBOOKS

MILITARY: AFSC DH 1-4 - Electromagnetic Compatibility.

2.2 Other Publications. The following documents form a part of this stan-
dard to the extent specified herein. Unless otherwise indicated, the issue
in effect on date of invitation for bid or request for proposal shall apply.
In the event of conflict between the documents referenced herein and the
contents of this standard, the contents of this standard shall be considered
a superseding requirement.

EIA STD RS-330 - Electrical Performance Standards for
Closed Circuit Television Camera 525/60
Interlaced 2:1.

STANAG 3558 - NATO Standardization Agreement. Location
of the Electrical Control Connector for
Airborne Armament Stores.

STANAG 3838AA - NATO Standardization Agreement. Aircraft
(DRAFT) Internal Time Division Command/Response

Multiplex Data Bus.

EIA STD RS-343A Electrical Performance Standard for High
Resolution Monochrome Closed Circuit
Television Camera.

SYSTEM 2 - Nuclear Digital Interface Requirements.

NATO AAP-6 NATO Glossary of Terms and Definitions
for Military Use.

2

190

I !-
...................... tt

3. DEFINITIONS

3.1 Address. A store location identification, as represented by a five-
digit binary number.

3.2 Aircraft. For the purpose of the standard, the term aircraft shall
be that which serves the function of commanding, scanning, and monitoring
bus traffic, an" which provides electrical power.

3.3 Eu ..terface Electronics. The electronic module necessary to inter-
face the data bus with the subsystem and the subsystem with the data bus.

3.4 EIA. Electronic Industries Association.

3.5 EMI. Electromagnetic Interference.

3.6 EMC. Electromagnetic Compatibility.

3.7 EMP. Electromagnetic Pulse.

3.8 GPS. Global Positioning System.

3.9 Message. A message is a time sequential transmission of words on
the data bus. A message transfer is complete when the command word, data
word(s) and the status word(s) have been transmitted. There are three
types of messages: (1) Aircraft-to-store, (2) Store-to-aircraft, and (3)
Store-to-store.

3.10 Electrical Interface. The connectors through which the data signals
and power flow between the aircraft and store.

3.11 Bit. Contraction of binary digit; may be either 0 (zero) or 1 (one).
It is equal to one binary decision or the designation of one of two possible
values or states of anything used to store or convey information.

3.12 Bit Rate. The number of bits transmitted per second.

3.13 Half Duplex. Data transfer in either direction over a single line
but not in both directions on that line simultaneously.

3.14 Command/Response Mode. Operation of data link in which the store
will respond only when commanded by the aircraft.

3.15 Asynchronous - Operation. An independent clock source in each store
which is utilized for the transmission of messages. The received messages
shall be decoded using clock information derived from the received signal.

3.16 Aircraft/Store Interface. The electrical (connector) interface
between the aircraft electrical system and the store electrical umbilical
cable.

3

'391

--------------- p

al
3.17 Byte. Each half of a 1-bit word (8bits) is a byte.

3.18 Store. Same as aircraft store in NATO AAP-6, repeated here for
convenience. Any device intended for internal or external carriage and
mounting on aircraft suspension and release equipment, whether or not
the item is intended to be separated in flight from the aircraft. Air-
craft stores are classified in two categories as follows:

a. Expendable store - an aircraft store normally separated from
the aircraft in flight such as a missile, rocket, bomb, nuclear weapon,
torpedo, pyrotechnic device, sonobuoy, signal, underwater sound device,
and other similar items.

b. Non-expendable store - an aircraft store which is not normally
separated from the aircraft in flight such as a tank (fuel and spray),
line-source disseminator, pods (refueling, thrust augmentation, gun,
electronic-countermeasure, data link, etc.), target, cargo drop container,
drone and other similar items.

NOTE: For the purposes of this standard, non-expendable stores
include suspension equipment (racks, adapters, missile launchers, etc).
It excludes thrust augmentation devices.

3.19 TCP. Time Correlation Pulse.

3.20 TBD. To Be Determined.

4. GENERAL STATEMENTS OF REQUIRERENTS

4.1 Introduction. This standard defines an aircraft-to-store electrical
interface in terms of its physical, electrical, and logical elements. The
aircraft/store interfacing is accomplished through a maximum of two elec-
trical connectors per store and is defined at the store receptacle discon-
nect and at the aircraft skin (see Figure 1). This standard addresses
only the aircraft-to-store interface, however, it is intended that this
standard interfacing concept will also be applied to electrical interfaces
between stores (e.g., launcher-to-missile) and will be addressed in further
versions of the MIL-STD. In this standard, the interface is categorized
and defined in three generic parts: (1) Electrical (voltage, current,
resistance, isolation, risetime, etc), (2) Physical (connector characteristics,
pin size, mounting, etc), and (3) Logical (information content, protocols,
timing, etc) - TBD.

4.2 Standard Interface System. The standard interface system consists of
a composite set of electrical/optical circuits, and specific interface con-
nectors. The signal set is comprised of redundant digital multiplex data
buses, coaxial contacts for high bandwidth signals, aircraft AC and DC
power, digital address lines, and a limited number of dedicated hardwired
dirretes. Provisions are included for digital multiplex data transfer
over twisted shielded pairs and optionally through fiber optic cable.

4

392

0
cc 0

44 44

di di

44.

0 1-4

01 w

I ca
'4. 0 0-
$4 V4

0 w 41

rn.-4 w

00 4:

000

0. 0 (n

4.3.4

0 0 0

C: 0
0 u 0 4.

0 W4

44 v 0

w k4
00

41-

6441-4 4 14

0 014-4 .

41 0

00 w.4 m ca
O~~ -44

00 0

04.1 00d

414 4

050
A didi .393

Interface signals (electrical) are specified in 5.2. Interface connector
(physical) requirements and environmental conditions are specitied in 5.3
and Appendix A. Information interface (logical) will be specified in 5.4
(TBD)

4.2.1 Digital Multiplex Data Buses. The majority of all command, control
and status data transfer between the store and the aircraft is performed
through redundant digital multiplex data buses as specified in 5.2.1 and
described by MIL-STD-1553. Store connection to the aircraft data bus is
accomplished using stubbing methods also prescribed in MIL-STD-1553. Data
buses are operated by the aircraft in an active standby redundant mode.
The aircraft commands the store to perform functions and transmit store
status using specially formatted digital messages. The interface defined
herein is intended to provide sufficient capacity and performance to satisfy
the requirements of all future store types.

4.2.2 Aircraft Power. The aircraft supplies DC and AC power to the store
interface in accordance with MIL-STD-704. Interface power requirements and
exceptions to MIL-STD-704 are specified in 5.2.5.

4.2.3 High Bandwidth Signals. Coaxial and fiber optic contacts are pro-
vided in the standard interface connector to accommodate high bandwidth
(RF, Video, Audio) interface signals. User guidelines for these interface
circuits are specified in 5.2.3.

4.2.4 Store Address Lines. Dedicated hardwire circuits that provide a
unique store address. Detail characteristics of these circuits are speci-
fied in 5.2.4.

4.3 Store Ihlications. The interface prescribed by this standard requires
that each sto-e contain electronic circuitry necessary to interface the
store directly onto the aircraft's digital data bus. This store electronics
must be capable of receiving and transmitting digital multiplex data as
defined in 1fIL-STD-1553 and be capable of converting digital data int
required store commands. A functional diagram of represpntativ. "t<

circuitry is contained in Figure 2.

4.4 Stores Management System Architecture. The air . . ,Apable
of transmitting and receiving digital multiple, ' ,, ontroller
as defined in MIL-STD-1553. This standa, r ,. prescribe, or
recommend a particular stores manage., ILrcture. The standard
is designed to be applicable t ,KCIe management schemes.
Viable schemes found to bhe .ti this standard should be re-
ported to thr V.F At, Laboratory, Eglin Air Force Base,
Florida.

5. . R E UQUIREMENTS

-. tltkon. This section prescribes detail electrical and physical
s'.nts for the standard aircraft/store interface. Signal functions,

rcal characteristics and connector pin assignments are specified, as

6

3q4

- - -

.V/

S / i . 7.. "

.- -- -I ;

* I - - '

S - I[

' H

L '

l i

7

395

are spec-ift • a,, opetating requirements for the standard inter-

s..,rical Interface Definition. All aircraft electrical interface
.&..roaents with allotted stores shall be accomplished through the elec-
trical signal sets contained in Figures 3a and 3b, and defined in Table I.
The particular pin assignment and arrangement for the SSI and Auxiliary
Power connectors are provided for identification and traceability purposes
only. Definitive signal and connector characteristics will be provided in
further versions of this MIL-STD. Also, spare pins, which are required
for future growth, are not shown and will be addressed later. Signals
supplied by these two connectors are arranged in descending order, starting
with high bandwidth signals and ending with structural ground. Five signal
types are contained in the interface: (1) High bandwidth signals, (2)
Serial digital data buses, (3) Store address lines, (4) Dedicated discrete
lines, and (5) High and low aircraft power. Eac'i interface line is defined
in Table 1 with one line per page. The pages are arranged alphabetically
by pin letter(s) for the SSI connector, and by pin number(s) for the Aux-
iliary Power connector for quick reference. Each signal description follows
the standard format defined below:

PIN: Each interface connector pin in the SSI connector
(Figure 3a) is assigned an alphabetic nomenclature
beginning with upper case and continuing through
the lower case letters. The letters I, 0, i, and
1 are not used to avoid possible confusion. In
the Auxiliary Power connector (Figure 3b) each pin
is assigned a number.

TITLE: Specifies signal name.

FUNCTION: Describes the function performed by the signal in
the store or carrier aircraft.

SOURCE: Indicates the source of the signal (signal trans-
mitter).

DESTINATION: Indicates the destination of the signal (signal
receiver).

RETURN: Cross-references the return path for the signal
being described.

CONTACT: Describes the contact size. It also describes
special wire treatment such as twisted pair or
shielding.

CEARACTERISTICS: Indicates type of signal and specifies signal
characteristics such s range, scale factor and
polarity or phasing. Except as noted, aircraft
power signals are specified to meet MIL-STD-704

8

396

UMBILICAL
To To

Aircraft Store
Connector High Bandwidth Signals Connector

A High Bandwidth Line I -
B . High Bandwidth Line 2 , - B
C O High Bandwidth Line 3 C
D - High Bandwidth Line 4 D

Store Audio o E

Serial Digital Data Buses

F-- <Data Bus A (+)
G- c Data Bus A (-)
H c Bus A Shield H

Data Bus B (+)
K- Data Bus B C-)
L_ Bus B Shield- m- L
M- I Fiber Optic Data Bus A -M
N - Fiber Optic Data Bus B N

Store Address Lines

P-fr Address Line 1

Address Line 2 R
S Address Line 3 -S

Address Line 4 -T
U- Address Line 5 U
V- Parity - V

Address Line Return- W

Dedicated Discretes

X - Emergency Jettison X
Y_ Store Present Interlock
Z -. Z

Aircraft Power

a 115 VAC 400 Hz Phase A -a

b- 1115 VAC 400 Hz Phase B _ b'
c 115 VAC 400 Hz Phase C c
d ". - 115 VAC 400 Hz Return - d

e g~f Initial Store Power (28 VDC)28 e~VCPwrPwr2 '

h Power 1 Return -- h
SPower 2 Return 0-

k_ Structure Ground a-

Figure 3a - Electrical Signal-Set SSI Connector

9

397

n..

ToB U ILICAL

To To

Aircraft Store
Connector Aircraft Power Connector

IP.115 VAC 400 Hz Phase A -1l

1 - 115 VAC 400 Hz Phase A -2

3- 115 VAC 400 Hz Phase b 3

115 VAC 400 Hz Phase B mm3

5- 115 VAC 400 Hz Phase C - 5

6 115 VAC 400 Hz Phase C - 6

7- ,-115 VAC 400 Hz Return - 7

8 115 VAC 400 Hz Return -o-8

9--- 28 VDC Power 3 80 9

00 -- 28 VDC Power 3 W-10

28 VDC Power 3 Return -11

12 28 VDC Power 3 Return -12

Figure 3b - Electrical Signal Set-Auxiliary Power Connector

10

398

_ _ _ _ _ Ai

standards. Discrete signals are always binary
and both voltage and logic states are described.

LOAD: Specifies the electrical current load requirement.
Load or source impedances in the weapon when specified
are resistive unless otherwise stated.

REMARKS: Provides additic - c-mments, safety isolation re-
quirements, references and/or other pertinent infor-
mation.

5.2.1 Digital Multiplex Data Bus. The functions of pins F, G, H and J, K,
L are to provide stub connections to two dual redundant bidirectional serial
digital multiplex buses which shall be used to transfer data between the
aircraft and the store. The store shall contain bu- interface electronics
configured to interface two independent data buses to one set of store sub-
system signals. Serial data words ana synchronization are combined by means
of Manchester biphase coding into one signal transmitted over a shielded,
twisted pair of conductors. The following paragraphs specify bus interface
r uirements that snall be satisfied by both the aircraft and the store.
Requirements pertain to both digital buses.

5.2.1.1 Data Bus Operation. The information flow on the data buses shall
be comprised of messages that are formed by three types of words (command,
data, status) as defined in para 4.3 of MIL-STD-1553. The aircraft/store
multiplex data buses in their most elemental configuration are shown in
Figure 4a; more compjex configurations, as illustrated in Figures 'o and
4c, will be defined in firther versions of this standard. The data buses
shall function asynchronously in a command/response mode with transmission
occurring in a half-duplex manner. Sole control of message transmission
on the buses shall reside with the aircraft. Data format, content, pro-
tocol, and timing for these messages will be completely specified in further
versions of this interface standard.

5.2.1.1.1 Subaddress/Mode. The subaddress/mode field in the command word
illustrated in Figure 3 and paragraph 4.3.3.5.1 of MIL-STD-1553 is hereby
defined for application to aircraft/store interfaces.

5...1.1.1.1 Mode Control. The five bits following the transmit/receive
bit shall indicate mode control when the value is 00000 or 11111 as indi-
cated in MIL-STD-1553.

. .[.] .3. ho __n' nterface (',m W-er the ±ive i t o]owinw tit
transmitreceivc bit arc other thn. an' 11.1 the, shal- bc u -ec

a, Logical Interfact Codes iT 'a with par.t: aph 5.4 TBE wt icr wi
define the logica. D ttion of thc: idarc. interta.2e.

... "Inrormatior Trans:,! 't ' data but mav empluov tn:ee
ssibi n)des of informatioi. trins' i alrcra**-t--stor transfer,

C2 store-to-aircraft transfer. anc " tor,.-t, -stccr transfer. These
mroaes wil operate aF describe., P - ' -iT-1ll, paragran! 4.3.:..6.

w u

41 z

I L

C)C

I--V

zi
.17I

(, g

o~.' a

>4W

4 4.

5.2.1.2 Stor, on Data Bus. The store shall meet the requirements for a
remote terminal as defined in MIL-STD-1553 and shall respond to the air-
craft stores management data bus as a remote terminal.

5.2.t.3 Aircraft on Data Bus. The aircraft shall be responsible for
sending data bus comnds, participating in data transfer, receiving
status response and monitoring system status as defined for the bus
controller in MIL-STD-1553.

5.2.1.4 Iectrical Interface Requirements. The store shall meet the
electrical requirements of a remote terminal interface with a transformer
coupled stub as defined in paragraph 4.5.1 of MIL-STD-1553. The aircraft
shall meet the electrical interface requirements of a transformer coupled
stub as defined in paragraph 4.5.2 of MIL-STD-1553.

5.2.1.5 Data Bus Requirements. The requirements for redundant data buses
as specified In paragraph 4.6 of MIL-STD-1553 shall apply.

5.2.1.6 Electromagnetic Compatibility. The generation of and suscepti-

bility of electromagnctic interference shall be controlled in the store
and aircraft. The design shall meet MIL-STD-461, Notice 3 and shall be
tested in accordance with MIL-STD-462, Notice 2. The specific suscepti-
bility requirements of MIL-STD-461, Notice 3 listed below shall be included
as a minimum.

Electric Field - RS03

Magnetic Field - RS02

5.2.2 Fiber Optic Data Bus. The standard interface contains a provision
for two fiber optic contacts to accommodate technology advances that are
expected to produce DoD approved and sanctioned fiber optic digital data
buses for aircraft and stores. Standards have not been established for
transmission of serial digital multiplex data over fiber optic data buses.
As standards evolve, they will incorporate in part, or in total, into this
standard, and will be accommodated in either the physical connector suggested
herein, or in a separate physical connector.

5.2.3 High Bandwidth Signals. The SSI connector shall contain four coaxial
contacts for bidirectional transfer of high bandwidth signals between the
aircraft and stores, and a fifth contact for transmission of store audio
data. The aircraft (SMS) shall assign, monitor, control, and route these
signals to their proper destination. Typical high bandwidth line application
includes: video, very high speed digital and analog, and Radio Frequency
(RF) signals. When video, Time Correlation Pulse, or RF signals are required,
they shall be allocated as follows:

5.2.3.1 video. High Bandwidth Line I (and continuing in order of priority
through Line 4, if needed) shall be used for the bidirectional transfer of
video type signals between the aircraft and stores. The electrical charac-

13

401

-~--- ,

teristics of the video shall be in accordance with EIA Standard RS-330,

with the following exceptions:

1. Sync pulse amplitude shall he .8 f .08 volts.

2. Video sensor load impedance 3hall be 93 ohms, +10%.

3. Signal can be bidirectina'.

Video shall '-)e 525 lines, or 175 lines, in accordance with EIA

Standard RS-343A.

5.2.3. 2 rime Correlation Pulse. :vP signal when required shall be assigned

to High Bandwidth Line 3. The function o! This circuit is to transfer 1 -

.erential digital target signals from the store. zecLfic -haracterlst>..K
of the 7CP signal are TBD.

5.2.3.3 Radio Frequency. RF signals, when required, shall be assigneli

Iligh Bandwidth Line 4. Typically, this circuit transfers Global PositicrIng

System (GPS) PF data from the aircraft to the store's navigational subsvtcm.

5.2.4 Store Address Lines. The aircraft shall supply address line outputr

(5 interface address lines, 1 parity line, and I address line return) to

each store interface. A logic "one" shall he an open circuit (I lOOK ohms

DC) referenced to the address line return. A logic "zero" shall be f 10

ohms DC referenced to the address line return. Address assignments shall

be made such that each store station has a separate and unique address.

Each assigned address plus parity shall contain an odd number of "ones".

5.2.5 Aircraft Power. Application and control of all power to the stcre

shall reside within the aircraft (normally a function of the stores manaze-

ment system). Aircraft power is specified for both the SSI (Figure 3a) and

-he Auxiliary Power (Figure 3b) :onnectors. However, the Auxiliary Power

.onnector shall only be used for unique i igh power applications i.e., hCM

pods). Not all stores will require cr have nrovisions for handling :hlc

nower. nor will all aircraft 9tatlons ne able to supply thl hi'h power.

"he maxlmum total aircraft power reci,4-1 '-v a store In any operating dcce

;,,i not exceed the power requirt'-. cfied "- . : tn

2 rait power shall be applied -c- th :c te .raie for ccual t or gre.iter -

)0 .. I i seconds pri -r to 'ts i- ' . - sr r,. .i -a l I r r '

stor,'Power requirements are 1 ,

?....5." ~ aw r -Mr - - ,) . . , ,' <" .: ", ", llown"_n X e ct 'c', .

. '. 'ver -v_-7 u. he 7hr - -- .' rov 'de inter,-ce r-t e,-'. in

W ns:)atI -vo ,t : t t'(.SS "vr -v t a" ges Oetw,: W "-
.f 'to -;(.il "- ,~i ': "- " t

;
5ver--,a A 4+5

~.5.1.3 Cirrent . The aircraft s'iall be capable of providing te
following current within the voltage limitations defiihed in 52Dl~

* . . Power 'I Power 2 d t2Lt !S0',iQItTit! s j t(; I()

Aimperes raix) p rlie

.. 2..I..2 ower 3 Lines. 3 to 23 amperes ,max) per line.

2ower ,Powcr Emt-' e, Er-rev jtL T
-" 4')L , WC 1' - TIC~S illi .. 11 Lx,~i t' I

i'r j Xec -Ci 1 - Je' 8m i..

eOL r ,e are txic Pwer)n Z r Power :t ,ii it)I.

Re tu r2-. i n t! s c',~owe-r '111641

ar-J s -- e returns tl'. ru e intkrlace, bo10ever, tia S*tcre
-- ,r: andl ?ower -L~ i~ oramri. Also. ere t ttSf -xti L

An:,. Power 2 Fetirn ormion

3. 1 ub Rse lim4 - Te rise tint *-or all DU -,ower -Ifte0 S shaA1 nOr
PXceed 1ilsco trom I vol t to 23 .i volts -uider t h L ond i L oi-s Sta L ed
in 5.2.. .1.1 anI .2- .. 3

5.2.5.2 AC Power. MKIL-STD-704 shall apply with. the following excet±'tLcas.

.2. 3.2.1 Vol1tag t!. The aircraft shal 11b:e -apab le o f s up i ving, I .

AC~ ~D, 400 Hertz , Thfree-phase,4 wi re , .ye connectekt :),we,-W3 'i cn L

urrent lu4-tations defined in 9.2.5.2.3.

Ove r-vol1 t age. heAircraft h al 11r cv id e Lfrr~. c rr" .'jF,

4ga:..~t vervcrages in exceiss) -BD Volts. erv
3sId T.BDj 'Lt sr. 11'-.. So Jb u.j.vect-j~.s

= id'Es jf~ :hr' h;v. . ~.~ e~m;u :

.T.I

.Aux

C.. 'A...* >,

5.3 Physical Interface Definition. The aircraft/store physical inter-
face consists of the SSI and Auxiliary Power connectors, and the inter-
connecting umbilical harness. Detailed connector requirements are con-
tained in Appendix A. Specific physical interface characteristics are
as follows:

5.3.1 Wiring and Cabling. The selection and installation of wiring
and cabling as it pertains to the scope of this interface shall be in
accordance with MIL-W-5088.

5.3.2 Wiring and Shielding Termination and Groundin. The termination
of wiring and shielding and the fabrication of cable harnesses, as it
affects the integrity of electrical signals through this interface, shall
be in accordance with AFSC DH 1-4, Chapter 5, Section 5B, Design Note 5B5,
unless otherwise specified herein.

5.3.3 Electromagnetic Interference. The cablirgand shielding terminating
at this interface, as it affects the electrical integrity of the signals,
shall meet the requirements of MIL-STD-461, Notice 3, Test Method RS03,
200 volts per meter test level per paragraph 6.19.2. Shielding braid
attenuation shall be 65 DB or greater from 14 KHz to 10 GHz.

5.3.4 Static Discharge Survival. Static discharge of 500 pf capacitor
at ±20 kilovolts through a 5-kohm resistor to an interface connector
shell shall not damage the interface.

5.3.5 Environmental Factors. Those components and associated wiring of
the aircraft/store configuration which affect the integrity of electrical
signals through the interface shall meet the same level of requirements
for the environmental envelope as specified for the electrical connector
in Appendix A, as applicable.

5.3.6 Store Receptacle Connector Orientation and Mounting. Orientation
and mounting applies to both the SSI and Auxiliary Power connectors.

5.3.6.1 Top Mounting. With the connector positioned such that the
longitudinal axis (the axis that traverses the connector from front to back
of the connector) is in the vertical plane and the connector face is fa ing
upward, the master keyway shall be in the forward position on the store
longitudinal axis (See Figure 5).

5.3.6.2 Rear Mounting. With the connector positioned such that the longi-
tudinal axis is in the horizontal plane and the connector face is facing
reprward (aft), the master keyway shall be in the up position on the store
vertical axis (See Figure 5).

5.3.6.3 Mounting Alignment and Integrity. The store receptacle mounting
shall be designed to prevent the master keyway from becoming misaligned
with the predetermined position. The retaining force of the mounting
shall be compatible with the lanyard release force.

16

MASTER
• " K FYWAY

LONGI UDINAL FORWARD

AXIS

MASTER
KEYWAY

11

iIii

5.3.6.4 Receptacle Position. The location of the receptacle connector
shall be in accordance with MIL-A-8591 and NATO Standardization Agreement,
STACNAG 3558, for lug mounted stores. The location for rail-launched stores
is to be determined.

5.3.7 Insert Arrangement. The final insert dimensional geometry is t
determined through a detailed analysis of signal classes (sensltv. .
pulse, RF) and the relationship of interference, sensitivity, at
temperature loading factors between the respective cir, ult-
and 6b depict, in non-dimensional geometry, a nom4..
tacts for the electrical signal sets contalned 1'
tively. The connector shell size is i f-, ' . arleter
It is estimated that this shell si: . t2 25. he
number and type of spare contt

5.3.8 Leposle Re e*" 4 *.., iei pIns in the store re-
ceptal h av, 't r-n , c-oupling after

, I shall incorporate
, , ,. .o(S) IroM e-'l to the same leve:

i• Definition. This section of the standard defines
•.r. . turJ data transfer procedure which is consistent with

'.. -ments set forth in the digital command/response, time division
- ." i n standard (MTL-STD-153), and provides tor standardization
o: intormation transfer (logical interface) across the aircraft/store
interface. Included will be interface message traffic and information
coding format. Details of this portion of the standard are TBD.

I,

Ge eAG 0

. D, j& a, (D
GM~eC

Ii~i Notes

1. Refer to Table I for pin
function.

2. This pin arrangement is for
illustrative purposes only.

Gauge 3. Spare pins are not shown.

12 16 20

Figure 6a. SSI Connector - insert arrangement

19

407

d

012 0402 8

010

Notes

1. Refer to Table 1 for pin
function.

2. This pin arrangement is

for illustrative purposes
12 Gauge only.

3. Spare pins are not shown.

Figure 6b. Auxiliary Power Connector - insert arrangement

20

I.{l

TABLE 1

ELECTRICAL SIGNAL SETS

SSI CONNECTOR

AUXILIARY POWER CONNECTOR

21

4 409

TABLE 1. Electrical Signal Set - SSI Connector.

PIN: A

TITLE: High Bandwidth Line 1

FUNCTION: Provide signal path for video or any high bandwidth

SOURCE: Aircraft/Store

DESTINATION: Aircraft/Store

RETURN: Coaxial shield

CONTACT: Size 12 coaxial

CHARACTERISTICS: Type of signal: Video or any high bandwidth

LOAD: See remarks

REMARKS: This line can be used to carry video or any high
bandwidth signals between aircraft and store. The
exact function of this line shall be determined by
the type of store being carried and shall be con-
trolled by the aircraft stores management system.
When used for video, parameters shall be in accor-
dance with EIA Standard RS-330 with the following
exceptions:

1. a (sync pulse amplitude) will be .8 + .08 volts.

2. The standard load impedance of the video sensor
shall be 93 ohms +_ 10O percent.

3. Video shall be 525 lines, or 875 lines in accor-
dance with EIA Standard RS-343A

22

41n

TABLE 1. Electrical Signal Set - SSI Connector. - Continued

PIN: B

TITLE: High Bandwidth Line 2

FUNCTION: Provide signal path for video or any high bandwidth
signal to/from aircraft/store.

SOURCE: Aircraft/Store

DESTINATION: Aircraft/Store

RETURN: Coaxial shield

CONTACT: Size 12 coaxial

CHARACTERISTICS: Type of signal: Video or any high bandwidth

LOAD: See remarks

REMARKS: This line can be used to carry video or any high
bandwidth signals between aircraft and store. The
exact function of this line shall be determined by
the type of store being carried and shall be con-
trolled by the aircraft stores management system.
When used for video, parameters shall be in accor-
dance with EIA Standard RS-330 with the following
exceptions:

1. a (sync pulse amplitude) will be .8 + .08 volts.

2. The standard load impedance of the video sensor
shall be 93 ohms t 10 percent.

3. Video shall be 525 lines, or 875 lines in accor-
dance with EIA Standard RS-343A.

23

411

MEm

TABLE 1. Electrical Signal Set -SSI Connector. -Continued

?IN: C

TITLE: High Bandwidth Line 3

FUNCTION: Provide signal path for video or any high bandwidth

SOURCE: Aircraft/Store

DESTINATION: Aircraft/Store

RETURN4: Coaxial shield

CONTACT: Size 12 coaxial

CHARACTERISTICS: Type of signal: Video or any high bandwidth

LOAD: See remarks

REMARKS: This line can be used to carry video or any high
bandwidth signals between aircraft and store. The

exact function of this line shall be determined by

the type of store being carried and shall be con-

trolled by the aircraft stores management system.

When used for video, parameters shall be in accor-
dance with EIA Standard RS-330 with the following
exceptions;

1. a (sync pulse amplitude) will be .8 ±.08 volts.

2. The standard load impedance of the video sensor

shall be 93 ohms t 10 percent.

3. Video shall be 525 lines, or 875 lines in accor-

dance with EIA Standard RS-343A.

24

412

TABLE 1. Electrical Signal Set - SSI Connector. - Continued

PIN: D

TITLE: High Bandwidth Line 4

FUNCTION: Provide signal path f or video or any high bandwidth

signal to/from aircraft/store.

SOURCE: Aircraft/Store

DESTINATION: Aircraft/Store

RETURN: Coaxial shield

CONTACT: Size 12 coaxial

CHARACTERISTICS: Type of signal: Video or any high bandwidth

LOAD: See remarks

REMARKS: This line can be used to carry video or any high
bandwidth signals between aircraft and store. The
exact function of this line shall be determined by
the type of store being carried and shall be con-
trolled by the aircraft stores management system.

fr When used for video, parameters shall be in accor-
dance with EIA Standard RS-330 with the following
exceptions:

1. a (sync pulse amplitude) will be .8 t .08 volts.

2. The standard load impedance of the video sensor
shall be 93 ohms t 10 percent.

3. Video shall be 525 lines, or 875 lines in accor-
dance with EIA Standard RS-343A.

25

413

TABLE 1. Electrical Signal Set - SSI Connector. - Continued

PIN: E

TITLE: Store Audio

FUNCTION: Target presence and lock-on indicator to pilot

SOURCE: Store

DESTINATION: Aircraft

RETURN: Power 1 Return, pin H

CONTACT: Size 20

CHARACTERISTICS: 400 to 2000 Hertz amplitude modulated carrier.
Zero to 30 volts RMS

LOAD: 10K - 20K ohms

REMARKS: Store audio output to indiate target presence
and/or lock-on.

I

26

414

TABLE 1. Electrical Signal Set - SSI Connector. - Continued

PIN: F

TITLE: Dat Bus A(+)

FUNCTION: Transmits serial digital multiplex command,
control, and status data between the aircraft
and the store

SOURCE: Aircraft

DESTINATION: Bus interface electronics in store

RETURN: Data Bus A(-), pin G

CONTACT: Size 20

CHARACTERISTICS: Bidirectional signal, Manchester biphase IAW MIL-STD-
1553

LOAD: To be determined

REMARKS: See 5.2.1. Part of a 2-wire twisted shielded cable.

Shield carried through connector. Reference pins
G and H.

27

415

TABLE 1. Electrical Signal Set - SSI Connector. - Continued

PIN: G

TITLE: Data Bus A(-)

FUNCTION: Transmits serial digital multiplex command,
control, and status data between the aircraft
and the store

SOURCE: Aircraft

DESTINATION: Bus interface electronics in store

RETURN: Data Bus A(+), pin F

CONTACT: Size 20

CHARACTERISTICS: Bidirectional signal, Manchester biphase lAW MIL-STD-
S553

LOAD: To be determined

REMARKS: See 5.2.1. Part of a 2-wire twisted shielded cable.
Shield carried through connector. Reference pins
F and H

28

416

TABLE 1. Electrical Signal Set - SSI Connector. - Continued

PIN: H

TITLE: Bus A Shield

FUNCTIN: Protects Data Bus A from spurious sigrals

SOURCE: Aircraft

DESTINATION: Store

RETURN: Not applicable

CONTACT: Size 20

CHARACTERISTICS: Multiplex data shield 0 VDC

LOAD: Not applicable

REMARKS: Part of a 2-wire twisted shielded cable. Reference

pins F and G

29

417

TABLE 1. Electrical Signal Set - SSI Connector. - Continued

PIN: j

TITLE: Data Bus(+)

FUNCTION: Transmits serial digital multiplex command,
control, and status data between the aircraft
and the store

SOURCE: Aircraft

DESTINATION: Bus interface electronics in store

RETURN: Data Bus B(-), pin K

CONTACT: Size 20

CHARACTERISTICS: Bidirectional signal, Manchester biphase IAW MIL-STD-
1553

LOAD: To be determined

REMARKS: See 5.2.1. Part of a 2-wire twisted shielded cable.
Shield carried through connecter. Reference pins
K and L

30

418

TABLE 1. Electrical Signal Set - SSI Connector. - Continued

PIN: K

TITLE: Data Bus B(-)

FUNCTION: Transmits serial digital multiplex command,
control, and status data between the aircraft
and the store

SOURCE: Aircraft

DESTINATION: Bus interface electronics in store

RETURN: Data Bus B(+), pin J

CONTACT: Size 20

CHARACTERISTICS: Bidirectional signal, Manchester biphase IAW MIL-STD-
1553

LOAD: To be determined

REMARKS: See 5.2.1. Part of a 2-wire twisted shielded cable.
Shield carried through connector. Reference pins
J and L

31

419

...

TABLE 1. Electrical Signal Set -SSI Connector. - Continued

PIN: L

TITLE: Bus B Shield

FUNCTION: Protects Data Bus B from spurious signals

SOURCE: Aircraft

DESTINATION: Store

RETURN: Not applicable

CONTACT: Size 20

CHARACTERISTICS: Multiple data shield 0 VDC

LOAD: Not applicable

REMARKS: Part of a 2-wire twisted shielded cable. Reference

pins J and K

32

420

TABLE 1. Electrical Signal Set -SSI Connector. -Continued

PIN: M

TITLE: Fiber Optic Data Bus A

FUNCTION: Transmits serial digital multiplex command,
control, and status data between the aircraft
and the store

SOURCE: Aircraft

DESTINATION: Store

RETURN: Not applicable

CONTACT: Size 12 contact for fiber optic cable

CHARACTERISTICS: To be determined

LOAD: Not applicable

REMARKS: Growth provision for standard interface

This pin will not be used until fiber optic
communications techniques are further developed.

Fiber optic communication may take place through
a separate advanced interface connector.

33

421

TABLE 1. Electrical Signal Set - SSI Connector. - Continued

PIN: N

TITLE: Fiber Optic Data Bus B

FUNCTION: Transmits serial digital multiplex command,
control, and status data between the aircraft
and the store

SOURCE: Aircraft

DESTINATION: Store

RETURN: Not applicable

CONTACT: Size 12 contact for fiber optic cable

CHARACTERISTICS: To be determined

LOAD: Not applicable

REMARKS: Growth provision for standard interface

This pin will not be used until fiber optic
communications techniques are further developed.

Fiber optic communication may take place through
a separate advanced interface connector.

A

34

422

TABLE 1. Electrical Signal Set - SSI Connector. - Continued

PIN: P

TITLE: Address Line 1 (most significant bit - MSB)

FUNCTION: Transmits store digital data bus identification
address bit from aircraft to bus interface
electronic system

SOURCE: Aircraft stores management system

DESTINATION: Bus interface electronics in store

RETURN: Address, Return Pin W

CONTACT: Size 20

CHARACTERISTICS: Logic 1 - Open Circuit (100 K ohms)
Logic 0 - Short Circuit connected to Pin W
(_5 10 ohms)

LOAD: Not applicable

REMA.KS Reference pins R, S, T, U, V, and W

35

423

44

TABLE 1. Electrical Signal Set - SSI Connector. - Continued

PIN: R

TITLE: Address Line 2 (MSB-l)

FUNCTION: Transmits store digital data bus identification
address bit from aircraft to bus interface
electronic system

SOURCE: Aircraft stores management system

DESTINATION: Bus interface electronics in store

RETURN: Address, Return Pin W

CONTACT: Size 20

CHARACTERISTICS: Logic 1 - Open Circuit (=__ 100 K ohms)
Logic 0 - Short-Circuit connected to Pin W
(!5 10 oms)

LOAD: Not applicable

REMARKS: Reference pins P, S, T, U, V, and W

36

424

TABLE 1. Electrical Signal Set - SSI Connector. - Continued

PIN: S

TITLE: Address Line 3 (MSB-2)

FUNCTION: Transmits store digital data bus identification
address bit from aircraft to bus interface
electronic system

SOURCE: Aircraft stores management system

DESTINATION: Bus interface electronics in store

RETURN: Address, Return Pin W

CONTACT: Size 20

CHARACTERISTICS: Logic I = Open Circuit (100 K ohms)
Logic 0 = Short Circuit connected to Pin W
(10 ohms

LOAD: Not applicable

REMARKS: Reference pins P, R, T, U, V, and W

37

425

TABLE 1. Electrical Signal Set - SSI Connector. - Continued

PIN: T

TITLE: Address Line 4 (MSB-4)

FUNCTION: Transmits store digital data bus identification

address bit from aircraft to bus interface

electronic system

SOURCE: Aircraft stores management system

DESTINATION: Store/bus interface electronics

RETURN: Address, Return Pin W

CONTACT: Size 20

CHRACTERISTICS: Logic I Open Circuit (> 100 K ohms)

Logic 0 - Short Circuit connected to Pin W

(5 10 ohms)

LOAD: Not applicable

REMARKS: Reference pins P, R. S, U, V, and W

38

426

TABLE 1. Electrical Signal Set - 55 Connector. -Continued

PIN: U

TITLE: Address Line 5 (least significant bit - LSB)

FUNCTION: Transmits store digital data bus identification
address bit from aircraft to bus interface
electronic system

SOURCE: Aircraft stores management system

DESTINATION: Bus interface electronics in store

RETURN: Address, Return Pin W

CONTACT: Size 20

CHARACTERISTICS: Logic 1 = Open Circuit (2 100 K ohms)
Logic 0 - Short Circuit connected to Pin W
(~10 ohms)

LOAD: Not applicable

REKARKS: Reference pins P, R. S, T, V, and W

39

427J

TABLE 1. Electrical Signal Set - 55 Connector. - Continued

PIN: V

TITLE: Parity Line

FUNCTION: Provides store digital data bus identification
address parity bit from aircraft to bus interface
electronics system

SOURCE: Aircraft stores management system

DESTINATION: Bus interface electronics in store

RETURN: Address, Return Pin W

CONTACT: Size 20

CHARACTERISTICS: Logic 1 - Open Circuit (:-: 100 K ohms
Logic 0 -Short Circuit (!S 10 ohms connected to
Pin Y)

REMARKS: Reference pins P, R, S, T, U, and W. This line will
be set to a logical 1 when the sum of the bits on the
5 address lines is even. This line will be set to a
logical 0 when the sum of the bits on the otner 5
address lines is odd (ODD PARITY).

40

428

TABLE 1. Electrical Signal Set - SSI Connector. - Continued

PIN: W

TITLE: Address Line Return

FUNCTION: Provide a return path between aircraft and bus
interface electronics for the address lines.

SOURCE: Store

DESTINATION: Bus interface electronics in store

RETURN: Not applicable

CONTACT: Size 20

CHARACTERISTICS:

LOAD: Not applicable

REMARKS: Reference pins P, R, S, T, U, and V. This line is
the address return for the address lines. It shall
be isolated from ground and not connected to store
structure.

41

429

-- A ~ .- -Z MW=An

TABLE 1. Electrical Signal Set -SSI Connector. -Continued

PIN: x

TITLE: Emergency Jettison

FUNCTION: Operates from aircraft emergency Jettison bus.
Provides mechanically and electrically isolated
Jettison signal to store interface

SOURCE: Aircraft emergency Jettison controller

DESTINATION: Store Jettison activator system

RETURN: Power 2 Rtn, pin j

CONTACT: Size 16

CHARACTERISTICS: Discrete signal
28 VDC: Jettison store order
Open: Jettison not ordered

LOAD: Maximum current is 10 amperes

REMARKS: High-priority aircraft command. Requires

dedicated hardwire circuit

42

430

TABLE 1. Electrical Signal Set - SSI Connector. - Continued

PINS: Y, Z

TITLE: Store Present Interlock

FUNCTION: Indicates store-present/store-gone status to
aircraft

SOURCE: Aircraft (store-present indication), pin Y

DESTINATION: Store

RETURN: Aircraft, pin Z

CONTACT: Size 20

CHARACTERISTICS: Pin Y to pin Z shortened indicates store present (!5 10 ohms)
Pin Y to pin Z open indicates store gone (2_ 100 K ohms)

LOAr: Not applicable

REMARKS: Positive store disconnect/release indicator to
aircraft. See figure 3a.

43
431

.--

TABLE 1. Electrical Signal Set - SSI Connector. - Continued

PIN: a

TITLE: 115 VAC 400 HZ PHASE A

FUNCTION: Provides one phase of the 115 volt, 400 Hertz,

AC power to the store

SOURCE: Aircraft

DESTINATION: Store

RETURN: 115 VAC 400 HZ RTN, pin d

CONTACT: Size 16

CHARACTERISTICS: Power Signal: 115 VAC, 400 Hertz, Phase A,
4-wire, wye-connected power

LOAD: Maximum sustained current is 10 amperes

REMARKS: Aircraft power shall be in accordance with MIL-STD-

704. The aircraft shall provide interface fault

protection. Reference pins b, c, and d

44

-4))

TABLE 1. Electrical SiRnal Set - SSI Connector. - Continued

PIN: b

TITLE: 115 VAC 400 HZ PHASE B

FUNCTION: Provides one phase of the 115 volt, 400 hertz

ac power to the store

SOURCE: Aircraft

DESTINATION: Store

RETURN: 115 VAC 400 HZ RTN, pin d

CONTACT: Size 16

CHARACTERISTICS: Power Signal: 115 VAC, 400 Hertz, Phase B,
4 -wire, wye-connected power

LOAD: Maximum sustained current is 10 amperes

REMARKS: This power shall be in accordance with MIL-STD-704.
The aircraft shall provide interface fault protec-
tion. Reference pins a, c, and d

45

433

TABLE 1. Electrical Signal Set - SSI Connector. - Continued

PIN: C

TITLE: 115 VAC 400 HZ PHASE C

FUNCTION: Provides one phase of the 115 volt, 400 hertz,
power to the store

SOURCE: Aircraft

DESTINATION: Store

RETURN: 115 VAC 400 HZ RTN, pin d

CONTACT: Size 16

CHARACTERISTICS: Power Signal; 115 VAC, 400 Hertz, Phase C
4-wire, wye-connected power

LOAD: Maximum sustained current is 10 amperes

REMARKS: This power shall be in accordance with MIL-STD-704.
The aircraft shall provide interface fault protec-
tion. Reference pins a, b, and d

46

434

I. II-

TABLE 1. Electrical Signal Set - SSI Connector. - Continued

PIN: d

TITLE: 115 VAC 400 HZ RTN

FUNCTION: Provides a neutral and a return path for unbalanced
loads connected to the 115 VAC, 400 hertz, three-
phase four-wire, wye-connected power supplied by
the aircraft

SOURCE: Store

DESTINATION: Aircraft

RETPAN: This is the ac power return signal

CONTACT: Size 16

CHARACTERISTICS: Power Signal: Neutral-O VAC

LOAD: Not applicable

RZ4ARKS: Phases A, B, and C are nominally 120 degrees out
of phase with each other; therefore-, the current
in the neutral wire (return) is no" equal to .he
simple sum of the maximum phas- currents. Reference
pins a, b, and c

47

435

" " ' "1 - - -........... , .. '.. " " "... -1

TABLE 1. Electrical Signal Set - SSI Connector. - Continued

PIN: e

TITLE: Initial Store Power

FUNCTION: Activates bus interface electronic system in
store to enable store operation on aircraft
digital data buses

SOURCE: Aircraft 28 VDC power bus

DESTINATION: Bus interface electronic system in store

RETURN: POWER I RTN, pin h

CONTACT: Size 20

CHARACTERISTICS: +28 VDC (nominal) applied when store electrical

bus interface activation is required

LOAD: 1.00 ampere maximum

REMARKS: Power shall be supplied per MIL-STD-704

48

436

4

TABLE 1. Electrical Signal Set - SSI Connector. - Continued

f

VDC ?PY1L'7-1

-. 2S VC aircraft power to

S", Arcra1f t

DESTINATION: Scorc

RETURN: POWER i R;, pin'

CONTACT: Sizc 16

CHARACTERISTICS: 28 VDC power

LOAD: Maximum, sustained current is 10 amperes

REMARKS: The 28 VDC power shall be in accordance witn MIL-STD-
704 except that the aircraft shall be capable of
supplying 22 VDC minimum to the interface at the
above specified current level. The aircraft shall
provide interface fault protection

49

4 437

TABLE 1. Electrical Sisnal Set - SSI Connector. - Continued

PIN: g

TITLE: 28 VDC POWER 2

FUNCTION: Supplies continuous 28 VDC aircraft power to the
store

SOURCE: Aircraft

DESTINATION: Store

RETURN: POWER 2 RTN, pin j

CONTACT: Size 16

CHARACTERISTICS: 28 VDC power

LOAD: Maxim-n sustained current is 10 amperes

REMARKS: The 28 VDC power shall be in accordance with MIL-
STD-704 except that the aircraft shall be capable
of supplying 22 VDC minimum to the interface at
the above specified current level. The aircraft
shall provide interface fault protection

50

438

.~ o., -.

TABLE 1. Electrical Signal Set - SSI Connector. - Continued

PIN: h

TITLE: POWER 1 RTN

FUNCTION: Provides a return path between the aircraft and
store f-cr 28 VDC Power 1

SOURCE: Aircraft and store

DESTINATION: Store and aircraft

RETURN: No applicable

CONTACT: Size 16

CHARACTERISTICS: 0 VDC power

LOAD: Maximum sustained current in the ground return line
is 11 amperes

REMARKS: Shall be isolated from ground and not connected
to weapon structure. Reference pins E and e

51

439

TABLE 1. Electrical Signal Set - SSI Connector. - Continued

PIN: j

TITLE: POWER 2 RTN

FUNCTION: Provides a return path between the aircraft and
store for 28 VDC Power 2

SOURCE: Aircraft and store

DESTINATION: Store and aircraft

RETURN: Not applicable

CONTACT: Size 16

CHARACTERISTICS: 0 VDC power

LOAD: Maximum sustained current in the ground return
line is 10 amperes

REMARKS: Shall be isolated from ground and not connected
to structure in weapon. Reference pins x and g

''1{

TABLE 1. Electrical Signal Set -SSI Connector. -Concluded

PIN: k

TITLE: Structure Ground

FUNCTION: Provides ground safety interconnect betweenI
aircraft and store structure ground

SOURCE: Aircraft frame ground

DESTINATION: Store frame ground

RETURN: Not applicable

CONTACT: Size 16

CHARACTERISTICS: 0 VDC

LOADl: Not applicable

R.E4ARKS: Shall not be used for signal or power return

path

53

441I

TABLE 1. Electrical Signal Set - Auxiliary Power Connector.

PIN: 1

TITLE: 115 VAC 400 Hz PHASE A

FUNCTION: Provides one phase of the 115 volt, 400 Hertz,
AC power to the store

SOURCE: Aircraft

DESTINATION: Store

RETURN: 115 volt 400 Hz RTN, pin 7 and 8

CONTACT: Size 12

CHARACTERISTICS: Power Signal: 115 VAC, 400 Hz, Phase A
4 - wire, wye-connected power

LOAD: Maximum sustained current is 23 amperes.

REMARKS: Aircraft power shall be in accordance with
MIL-STD-704. The aircraft shall provide inter-
face fault protection. This pin supplies half
of the available power of phase A. Reference
pins 1 through 8.

54

'42

TABLE 1. Electrical Signal Set - Auxiliary Power Connector. - Continued

PIN: 2

TITLE: 115 VAC 400 Hz PHASE A

FUNCTIOY: Provides one phase of the 115 volt, 400 Hertz,
AC power to the store

SOURCE: Aircraft

DESTINATION: Store

RETURN: 115 volt 400 Hz RTN, pin 7 and 8

CONTACT: Size 12

CHARACTERISTICS: Power Signal: 115 VAC, 400 Hz, Phase A,
4 - wire, wye-connected power

LOAD: Maximum sustained current is 23 amperes.

REMARKS: Aircraft power shall be in accordance with
MIL-STD-704. The aircraft shall provide inter-
face fault protection. This pin supplies half
of the available power of phase A. Reference
pins 1 through 8.

55

I - i... . I"- ", -. - , ,
43_____ 1

TABLE 1. Electrical Signal Set - Auxiliary Power Connector. - Continued

PIN: 3

TITLE: 115 VAC 400 Hz PHASE B

FUNCTION: Provides one phase of the 115 volt, 400 Hertz,
AC power to the store

SOURCE: Aircraft

DESTINATION: Store

RETURN: 115 volt 400 Hz RTN, pin 7 and 8

CONTACT: Size 12

CHARACTERISTICS: Power Signal: 115 VAC, 400 Hz, Phase A,
4 - wire, wye-connected power

LOAD: Maximum sustained current is 23 amperes.

R DARKS: Aircraft power shall be in accordance with
MIL-STD-704. The aircraft shall provide inter-
face fault protection. This pin supplies half
of the available power of phase B. Reference
pins I through 8.

56

TABLE 1. Electrical Signal Set - Auxiliary Power Connector. - Continued

PIN: 4

TITLE: 115 VAC 400 Hz PHASE B

FUNCTION: Provides one phase of the 115 volt, 400 Hertz,
AC power to the store

SOURCE: Aircraft

DESTINATION: Store

RETUPUN: 115 volt 400 Hz RTN, pin 7 and 8

CONTACT: Size 12

CHARACTERISTICS: Power Signal: 115 VAC, 400 Hz, Phase A,
4 - wire, wye-connected power

LOAD: Maximum sustained current is 23 amperes.

REMARKS: Aircraft power shall be in accordance with
MIL-STD-704. The aircraft shall provide inter-
face fault protection. This pin supplies half
of the available power of phase B. Reference
pins 1 through 8.

57

_ _,i

4TABLE 1. Electrical Signal Set - Auxiliary Power Connector. - Continued

PIN: 5

TITLE: 115 VAC 400 Hz PHASE C

FUNCTION: Provides one phase of the 115 volt, 400 Hertz,
AC power to the store

SOURCE: Aircraft

DESTINATION: Store

RETURN: 115 volt 400 Hz RTN, pin 7 and 8

CONTACT: Size 12

CHARACTERISTICS: Power Signal: 115 VAC, 400 Hz, Phase A,
4 - wire, wye-connected power

LOAD: Maximum sustained current is 23 amperes.

REMARKS: Aircraft power shall be in accordance with
MIL-STD-704. The aircraft shall provide inter-
face fault protection. This pin supplies half
of the available power of phase C. Reference
pins I through 8.

58

446

TABLE 1. Electrical Signal Set - Auxiliary Power Connector. - Continued

PIN: 6

TITLE; 115 VAC 400 Hz PHASE C

FUNCTION: Provides one phase of the 115 volt, 400 Hertz,
AC power to the store

SOURCE: Aircraft

DESTINATION: Store

RETURN: 115 volt 400 Hz RTN, pin 7 and 8

CONTACT: Size 12

CHARACTERISTICS: Power Signal: 115 VAC, 400 Hz, Phase A
4 - wire, wye-connected power

LOAD: Maximum sustained current is 23 amperes.

REMARKS: Aircraft power shall be in accordance with
MIL-STD-704. The aircraft shall provide inter-
face fault protection. This pin supplies half
of the available power of Phase C. Reference
pins 1 through 8.

59

447

TABLE 1. Electrical Signal Set - Auxiliary Power Connector. -Continued

PIN: 7

TITLE: 115 VAC 400 Hz RTN

FUNCTION: Provides a neutral and a return path for
unbalanced loads connected to the 115 VAC,
400 Hertz, three-phase four wire, wye-con-
nected power supplied by the aircraft

SOURCE: Aircraft

DESTINATION: Store

RETURN: This is the AC power return signal

CONTACT: Size 12

CHARACTERISTICS: Power Signal: Neutral - 0 VAC

LOAD: Not applicable

REMARKS: Phases A, B and C are nominally 120 degrees
out of phase with each other; therefore, the
current in the neutral wire (return) is not
equal to the simple sum of the maximum phase
currents. This pin is half of the return line.

Reference pins 1 through 8.

60

448

TABLE 1. Electrical Signal Set - Auxiliary Power Connector - Continued

PIN: 8

TITLE: 115 VAC 400 Hz RTN

FUNCTION: Provides a neutral and a return path for
unbalanced loads connected to the 115 VAC,
400 Hertz, three-phase four wire, wye-con-
nected power supplied by the aircraft

SOURCE: Aircraft

DESTINATION: Store

RETURN: This is the AC power return signal

CONTACT: Size 12

CHARACTERISTICS: Power Signal: Neutral - 0 VAC

LOAD: Not applicable

REMARKS: Phases A, B and C are nominally 120 degrees out
of phase with each other; therefore, the current
in the neutral wire (return) is not equal to the
simple sum of the maximum phase currents. This
pin is half of the return line. Reference pins
1 through 8.

61

449

TABLE 1. Electrical Signal Set - Auxiliary Power Connector. - Continued

PIN: 9

TITLE: 28 VDC POWER BUS C

FUNCTION: Supplies continuous 28 VDC aircraft power to
the store.

SOURCE: Aircraft

DESTINATION: Store

RETURN: Power return, pins 11 and 12

CONTACT: Size 12

CHARACTERISTICS: 28 VDC power

LOAD: Maximum sustained current is 23 amperes

REMARKS: The 28 VDC power shall be in accordance with
MIL-STD-704 except that the aircraft shall be
capable of supplying 22 VDC minimum to the inter-
face at the above specified level. The aircraft
shall provide interface fault protection. This
pin is half of the DC lines. Reference pins 9
through 12.

62

450

TABLE 1. Electrical Signal Set - Auxiliary Power Connector. -Continued

PIN: 10

TITLE: 28 VDC POWER BUS C

FUNCTION: Supplies continuous 28 VDC aircraft power to
the store

SOURCE: Aircraft

DESTINATION: Store

RETURN: Power return, pins 11 and 12

CONTACT: Size 12

CHARACTERISTICS: 28 VDC power

LOAD: Maximum sustained current is 23 amperes

REMARKS: The 28 VDC power shall be in accordance with
MIL-STD-704 except that the aircraft shall be
capable of supplying 22 VDC minimum to the inter-
face at the above specified level. The aircraft
shall provide interface fault protection. This
pin is half of the DC lines. Reference pins 9
through 12.

63

451

TABLE 1. Electrical Signal Set - Auxiliary Power Connector. - Continued

PIN: 11

TITLE: POWER RETURN C

FUNCTION: Provides a return path between the aircraft
and store for 28 VDC Power Bus C

SOURCE: Store

DESTINATION: Aircraft

RETURN: This is a DC power return line

CONTACT: Size 12

CHARACTERISTICS 0 VDC power

LOAD: Maximum sustained current in the ground return
line is 23 amperes.

REMARKS: Shali be isolated from ground and not connected
to structure in weapon. This pin is one half
of the DC return lines. Reference pins 9 through
12.

46

452

TABLE 1. Electrical Signal Set - Auxiliary Power Connector. - Continued

1 12

POWER RETURIN C

1, C 1 ON: ?rovidc:, a return pth between tne aircraft
and s. cru fcor 26 VI)C Power Bus C

SOU'. CL: Store

DESTINATION: Aircraft

RETURN: This is a DC power return line

CONTACT: Size 12

CHARACTERISTICS: 0 VDC power

LOAD: Maximum sustained current in the ground return
line is 23 amperes.

REMARKS: Shall be isolated from ground and not connected
to structure in weapon. This pin is one half of
the DC return lines. Reference pins 9 through
12.

65

453

APPENDIX A

6. ELECTRICAL CONNECTOR REQUIREMENTS

6.1 Introduction. This section prescribes detail electrical connector
physical requirements for the standard aircraft/store interface. Specific
physical and operating requirements for the standard interface connector
are given. The following requirements shall be in accordance with MIL-
C-38999, or subsequent revisions. The following material has been repro-
duced from MIL-C-38999 to minimize the need for additional documents to
obtain the requirements. This material applies to Series IV connectors
only. Requirements not specific to MIL-C-38999 are also presented (where
possible) which indicate a reasonable alternative to a design in preference
to nothing at all or a "to be determined". The underlined paragraph number,
e.g. 4.8.2, is the appropriate test paragraph of MIL-C-38999 and the paren-
thetical number (3.5.6) is the requirement paragraph of MIL-C-38999.

6.2 Definitions.

6.2.1 Electrical Connector Terminology. See Section 3 of MIL-STD-1353
for standard electrical connector terminology definitions.

6.2.2 Requirements. Requirements described in the following sections are
of two types. The first, Section 6.3 (General) are written in general terms
to address major connector characteristics definitely required for the
standard interface applications. Characteristic descriptions have been
derived from known technology capabilities and/or an analysis of necessary
connector features. The second type, contained in 6.4 (Detailed), and
referenced to MIL-C-38999, are considered to be a boiler plate requirements
applicable to and contained in all airborne connector specifications. The
standard is not intended to form a basis for the formulation of revisions
to existing specifications.

6.3 General Requirements.

6.3.1 Design and Construction. (3.4) Connectors and accessories shall be
designed and constructed to withstand normal handling incident to installa-
tion and maintenance in service. Connector receptacle interchangeability
control dimensions and accessory interface dimensions shall be as specified
on Figure 1. All accessories (plugs) designed to be used with MIL-C-38999
connectors must conform to Figure 2.

6.3.2 Types.

a. Receptacle, aircraft shall contain socket contacts.

b. Plug, aircraft umbilical to store shall contain socket contacts.

6.3.3 Finish. The finish shall be electroless nickle coating (conductive)
-650 C to 2O0O C, followed by cadmium plate 0.0001 inch (0.003m) minimum
in accordance with QQ-P-416,, Type II.

A-1

455

1R1'IDIM pAGI BLANKC-NOT FILN=

6.3.4 Interchangeability and Intermateability. The connectors (Figures 1.
2 and 3) shall be completely interchangeable and intermateable from all
vendor sources and production runs. (3.5) All connectors having the same
part number shall be completely interchangeable with each other with re-
spect to installation and performance.

6.3.5 Pin Protection. The receptacle connector shall be de3igned to
prevent the plug shell from contacting the receptacle pins under any
conditions of mating. This design is commonly referred to as "scoop proof".

6.3.6 Coupling. Connectors shall be coupled to counterpart connectors by
means of a breech mechanism (Series IV). The mechanism shall include a
means of maintaining the mated connector in full engagement. The coupling
ring shall be knurled or fluted to facilitate coupling and shall be cap-
tivated. The coupling nuts of all connectors shall have a blue color band
in accordance with EIA RS-359, indicating a rear release contact retention
system.

6.3.6.1 Ease of Coupling. (3.4.6.1) Counterpart connectors of any arrange-
ment shall be capable of being fully coupled and uncoupled in a normal and
accessible location without the use of tools.

6.3.7 Engagement and Locking. Counterpart connectors shall be capable of
full engagement and disengagement without the use of tools. Engagement of
connectors shall be defined as mated insert faces. For Series IV, complete
coupling shall be accomplished by approximately 900 clockwise rotation of
the coupling nut, and shall incorporate a positive detent action at both
the mated and unmated position, providing an audible and tactile indication
of complete coupling, as well as an anti-decoupling force. A red band shall
be located on the plug so as to be visible when unmated and fully covered
when completely mated.

6.3.8 Polarization of Connector Shells. (3.4.6.3) Polarization of connector
shells shall be accomplished by means of five integral keys and suitable
matching keyways on the counterpart (See Figures 1 and 2). Polarization
shall be accomplished before initial engagement of the coupling ring. During
axial engagement, pins shall not touch sockets or the insert face until
polarization has been achieved.

6.3.8.1 Pin to Pin Mating Prevention (Series IV only). Series connectors
shall be provided with key keyway widths arranged so as to prevent a
plug with pin contacts frc. ing mated with a receptacle with pin contacts.

6.3.9 Electrical Cc.. ruity. The connectors shall be designed to provide
positive electrical continuity between mated shells prior to contact engage-
ment.

6.3.10 Electromagnetic Interface (EMI)Grounding Spring Fingers. EMI
grounding spring fingers shall be provided and shall be desi&gned irk
manner which will ensure proper engagement of the mating shells and provide
electrical contact.

A-2

456

6.3.11 Lanyard. The lanyard shall be mounted to the plug connector (air-
craft-to-store 6.3.2.6) such that rotation of the connector for engagement
will not shorten the effective length of the lanyard. The design of the
lanyard to connector attaching feature shall provide for attaching and
removing lanyard cables using the normal compliment of standard shop tools.
Design of the lanyard to connector attaching feature shall ensure total
integrity of the connector to meet the required lanyard retention force.

6.3.11.1 Lanyard Retention. The lanyard, including all hardware and joints,
shall withstand an axial tensile force of 150 pounds minimum.

6.3.11.2 Lanyard Release Force. The lanyard release force shall be no less
than 20 pounds and no more than 40 pounds. Direction of lanyard pull shall
be at any angle within 30 degrees of the connector longitudinal axis.

6.3.12 Shielding Braid Termination. The plug connector backshell shall
provide for shieloing braid termination to allow integral bounding of
cable envelop shielding to the connector.

6.3.13 Water Sealing. The plug connector backshell shall be designed to
ensure complete sealing from entrance of water. A suitable quality assurance
test shall be specified to encompass the aircraft/store operational environ-
ment.

6.3.14 Electrical Contacts. The following contact types shall be provided
as specified, in MIL-C-39029A, or from vendor sources as applicable. The
range of size within the types specified shall be compatible with the
cavity size in the insert specified for this standard. Contact types of
one size shall be completely interchangeable and Intermateable within the
cavity.

a. Power Contacts - shielded and unshielded, crimp removable.

b. Coaxial Contacts

c. Fiber Optics

6.3.14.1 Contact Sizes. See Table 1, MIL-STD-1760.

6.3.14.2 Insert Arrangement. TBD

6.3.14.3 Connector Shell Size. A size 25 connector shell shall be used
for the insert of 6.3.14.2.

6.3.15 Electromagnetic Interference Effectiveness. Unless otherwise stated
herein, MIL-STD-461 of current issue, will apply. When tested as specified
in paragraph 4.7.27 of MIL-C-38999 of current issue, the EMI shielding
effectiveness of mated shells shall not be less than that specified in
Table I.

A-3

457

TABLE II. MI Shielding Effectiveness (Class W)

Frequency Leakage Attenuation
MRz db minimum

.014-100 90
100 90
200 85
300 83
400 81
800 76

1,000 75
1,500 69
2,000 65
3,000 61
4,000 58
6,000 55
10,000 50

6.3.15.1 Electromagnetic PulsEe MP!) Susceptibility. To be determined.

6.3.16 'Receptacle Mounting. The most common mounting designs are flange
and jam nut.

6.3.16.1 Store Mounting. The type of receptacle mounting design is optional.
The type of mounting used shall have a structural strength compatible with
the lanyard release force. The type mounting shall be sufficiently rigid
to prevent the receptacle turning from a predetermined fixed master polari-
zation key position.

6.3.16.2 Aircraft Mounting. The type of receptacle mounting design shall
be a flange. fhe type mounting shall be sufficiently rigid to prevent the
receptacle turning from a predetermined fixed master polarization key
position.

6.4 Detailed Requirements.

6.4.1 Materials. (3.3)

6.4.1.1 Metals. Metals shall be of a corrosion-resistant type or shall be
plated or treated to resist corrosion.

6.4.1.2 Dissimilar Metals and Compatible Couples. When dissimilar metals
are used in intimate contact with each other, protection against electrolysis
and corrosion shall be provided. The use of dissimilar metals in contact,
which tend toward active electrolytic corrosion, (particularly brass, copper,
or steel used in contact with aluminum or aluminum alloy) is not acceptable.
However metal plating or metal spraying of dissimilar-base metals to provide
similar or suitable abutting surface is permitted. The use of dissimilar
metals separated by a suitable insulating material is also permitted. Dissim-
:lar metals and compatible couples are defined in requirement 16 of MIL-STD-454.

A-4

458

6.4.1.3 Hdrolytic Stability. (3.3.1.2) All nonmetallic material shall
be selected to meet the hydrolytic revision resistance requirements specified
in requirement 47 of MIL-STD-454.

6.4.2 Components. (3.3.2) Material for specific components of the connector
shall be as follows:

6.4.2.1 Ciass F. (3.3.2.1)

a. Shell - impact extruded or machined aluminum alloy.
b. Coupling ring, jam nut, and potting ring - machined alumainum alloy.
c. Insert (molded) - reinforced epoxy resin or other suitable rigid

dielectric material.
d. Spring fingers - heat treated beryllium copper or corrosion-

resistant steel.
e. Filler compound - RTV silicone conforming to MTL-A-46146.
f. Gaskets, grommet, and interface seals - silicone or fluorocarbon

elastomer.

6.4.2.2 Fungus Resistant. (3.3.3) Material used in the construction of
these connectors shall be fungus inert in accordance with requirement 4
of MIL-STD-454.

6.4.2.3 Nonmagnetic Materials. (3.3.4) The relative permeability of the
connector assembly shall be less than 2.0 when measured with an indicator
conforming to MIL-I-17214.

6.4.3 Insert Design. (3.4.2)

6.4.3.1 Environment Resisting Classes. (3.4.2.1) The entire insert and
wire sealing or wire supporting member of the environment resisting assemblies
shall be essentially one integral part, designed to provide suitable sealing
and support around the wires and be nonremoval. The rigid dielectric shall
be one integral piece. The design shall be such as to permit the removal
and replacement of individual contacts into their connector inserts with an
MS27534 or NS27495 installing/removal tool. The contact locking device
shall be contained in the rigid dielectric insert and shall so retain the

-' contacts as to meet the contact retention requirements of this specification,
see Figure 4. Inserts shall be secured to prevent rotation. AUl pin con-
tact inserts shall have a resilient interface seal bonded to the front face
in accordance with the applicable standards. Socket insert entry holes and
pin "donut" rings shall conform to MIL-C-38999 Figure 5. Sealing to coaxial
cable terminated to shielded contacts may be accomplished by means of separate
resilient bushings. If separate resilient bushings are required, they shall
be furnished with the connector.

6.4.4 Mating Seal. (3.4.3.3) Plugs and receptacles with pin inserts shall
have a resilient face with individual pin barriers. The pin barrier pro-
jections shall seal in their respective lead-in chambers of the hard face
socket insert. The resilient interfacial seal shall provide individual
contact seals in the mated condition to ensure circuit isolations between

A-5

459 -

each contact and contact to shell. The plugs (Series IV) shall incorporate
an O-ring peripheral seal.

6.4.5 Shell (3.4.4) Shells, including mounting flanges, shall be one-piece
construction and shall be designed to retain their inserts in one position,
both axially and with respect to rotation, by mechanical means. Molding
shall be used as the retention means for environment resisting connectors.
The receptacle shells of crimp contact connectors shall have a blue color
band in accordance with EIA RS-359, indicating a rear release contact re-
tention system. The color band shall be located so that it is readily vis-
ible to any person servicing a mounted receptacle connector.

6.4.5.1 Spring Fingers. (3.4.4.1) Spring fingers shall be designed to
make electrical contact with the mating shell without interfering with
proper engagement. The spring shall be retained about the shell periphery.
Minimum engagement of spring fingers shall be 0.040 (1.02mm) prior to contact
engagement (Series IV).

6.4.5.2 Jam-Nut Mounting Receptacles. (3.4.4.2) Jam-nut mounting receptacles
shall be provided with a mounting nut DoD-C-38999/28 Series IV, all with pro-
visions for locking, and an "0" ring MS9021.

6.4.6 Lubrication. (3.4.6.4) The breech mechanism on Series IV connectors
may be coated with a suitable dry film lubricant to MIL-L-46010 (non-graphite).

6.4.7 Plating. (3.4.8)

6.4.7.1 Contacts (Crimp). (3.4.8.1) The plating and the plating thickness
on crimp contacts shall be as specified in MIL-C-39029.

6.4.7.2 Shell and Accessory Hardware. (3.4.8.2) Unless otherwise specified,
the finish on the shells and accessory hardware shall be in accordance wi"-
the following designation:

Series IV, Class:

F - Electrically conductive electroless nickle conforming to
A4 MIL-C-26074, Class 3 or 4, followed by cadmium plate 0.0001

inch (0.003mm) minimum in accordance with QQ-P-416. Type II.
Use of suitable underplate is permissible.

A-6

460

OWN

TA3LE Il. Contact eng:icment and separation forces.

Initial After conditioning

Minimum Maximum Maximum tinimrum Maximum Maximum
separation average engagement separation average engagement

Mating force engagement force force engagement force
end (ounces) force (ounces) (ounces) force (ounces)
size (ounces) (ounces)

Minimum Maximum Maximum Minimum Maximum Maximum
diameter diameter diameter diameter diameter diameter

Nis3197 pin MS3197 pin NIS3197 pin I53197 pin NIS3197 pin MS3197 pin

12 3 24 30 2.5 29 36

16 2 24 30 1.5 29 36

20 0.7 12 18 0.6 14 22

6.4.8 Contact engagem-nt and separation force. The contact engagement and
separation force shall be within the applicable limits specified in Table Ill.

6.4.9 Thermal shock (all classes except hermetics). (3.8) When tested as
specified in 4.7.4, there shall be no damage detrimental to the operation of
the connector.

6.4.10 Coupling torque. (3.10) hen tested as specified in 4.7.6, the
coupling torque for m;lting and unmating of counterpart connectors shall meet
the requirements of Table IV.

TABLE IV. Coupling torque. I/

Shell Maximum emgagement Minimum
size and disengagement disengagement

Pound Newton Pound Newton
inch meters inch meters

25 40 4.6 5 0.6

1/ For Series IV connectors with spring fingers, an axial force as specified
in Table III must be encountered prior to coupling torque during engagement,
and following coupling torque upon disengagement.

6.4.11 Durability. (3.11) Whlen tested as specified in 4.7.7, the connectors
shall show no defects detrimental to the operation of the connectors and shall

A-7

461

-meet the subsequent test requirements (see 4.4.3).

6.4.12 Altitude immersion ({qialification only) (excent hermetics). (3..2)
When tested as specified in 4.7.8, the mated connector shall meet a min-
imum insulation resistance of 1,000 and the requirements of dielectric with-
standing voltage as specified in (3.14) 50.17.13.

6.4.13 Insulation re:,istance. (3.13)

6.4.13.1 Insulation resistance at ambient temperature. (3.13.1) When
tested as specified in 4.7.9.1, the insulation resistance between any
pair of contacts and between any contact and the shell shall be greater than
5,000 megohms. Insulation resistance after altitude immers-ion shall be 1,000
megohms minimum. Insulation resistance after humidity shall be 100 megohms
minimum.

6.4.13.2 Insulation resistance at elevated temperature. (3.13,2) When
tested as specified in 4.7.9.2, the insulation resistance between an) pair
of contacts and bcte'en any contact and the shell shall be greater than 1000
megohms for environinent resisting class conectors.

6.4.14 Dielectric withstanding voltage. (3,14) Wlen tested as specified
in 4.7.10.1, or 4.7.10.2, connectors shall show no evidence of flashover or
breakdown.

6.4.15 Insert retcntion. (3.15) Whon tested as specified in 4.7.11, un-
mated connectors (,T) shnll retain their inserts in their proper location
in the shell and thcrc shall he no evidence of cracking, breaking separation
from the shel', or looscning of parts.

6.4.16 Salt spray (rorrosion). (3.16) L'hen tested as specified in 4.7.12.
unmated conncctors .hill show no exposure of base metal due to corrosion
which will adverscly .Iffect performace.

6.4.17 Electrical ecn,,ement. (3.18) When tested as specified in 4.7.14,
wired, mated connecters shall provide a minimum of electrical engagement for
and (o.050 inch (1.2-,.n) Series IV.

6.4.18 Exter'nalhcnlin,, ,,cnt. (3.19) hlnic tested as specified in 4.7.15,
connctors 01.1 .,i I t I c' d v' oF ,Ia, I .. t Itri mn t ; I to the i r normall
operatioti s ntor zholl i t('h , o :I,, iI t up t (),, e c cut ri -al c0m1tiniity.

6.4.19 Contact retntion. (3,23) When tested as specified in 4.7.19,the
axial displacenot th contact shall not exceed 0.013 inch (0.30mm). No
damage to contact!, ,,r ; hall re'ctlt

6.4.20 Altitte-l:, tUj. [j:Ltttre ll,,1 , ,sttcd ;s sp cified in 4.7.20. theconnectors shall 1nct the re qciremcnts of the dielectric withstT volt-
age a- sea level sp ";fied in (3.14) and insulation resistance at ambient
temperature specific.l in (V.13.1).

A-8

462

cw

6.4.21 Vibration (qualification only). (3.26) len tested as specified
in 4.7.22,there shall be no electrical discontinuity and there shall be no
disengagement of the mated connectors, backing off of the coupling mechanism,
evidence of cracking, breaking, or loosening of parts.

6.4.22 Shock. (3.27) hen tested as specified in 4.7.23, there shall be
no electrical discontinuity and there shall be no disengagement of mated
connectors, evidence of cracking, breaking, or loosening of parts.

6.4.23 Shell-to-shell conductivity. (3.28) When tested as specified in
4.7.24, the probes shall not puncture or otherwise damage the connector
finish and the maximum measured potential drop across assemblies shall be
as follows:

a. Series IV with spring fingers:
1. Class W - 2.5 millivolt

6.4.24 Humiditv. (3.29) When tested as specified in 4.7.25, wired mated
connectors shall show no deteriation which will adversely effect performance
of connector. Following the test, insulation resistance shall be 100 megohms
or greater.

6.4.25 Shell spring fin,zer forces. (3.30) When tested as specified in
4.7.26, the forces necessary to engage and separate EMI plugs with recp-
tacle shells shall be within the values specified in Table V.

TABLE V Shell spring finger forces.

Axial force

Series IV

maximum M Minimum

Pounds Newton Pounds Newton

24/25 10 44.5 0.5 2.2

6.4.26 Ozone exposure. (3.32) When tested as specified in 4.7.28, the
connector shall show no evidence of a cracking of dielectric material or
other damage due to ozone exposure that will adversely effect performance.

6.4.27 Fluid immersion. (3.35) When tested as specified in 4.7.29, connectors
shall meet the requirements for coupling torque (3.10) and dielectric
withstanding voltage (3.14).

6.4.28 Retention system fluid immersion. (3.33.1) When tested as specified

A-9

4 (, 3

in 4.7.29.1, the insert assemblies shall meet requirements of contact reten-
tion (3.23). Effects of the fluids on resilient sealing shall'not be a
consideration of this test.

6.4.29 Pin contact stability. (3.34) When tested as specified in 4.7.30,
the total displacement of a reference point on the contact tip end shall
not exceed the amount shown in Table VI.

TABLE VI Pin contact stability.

Total displacement Force
Contact size...

Inch MM Pounds Newton

20 0.054 1.37 0.55 2.4
16 0.075 1.91 1.10 4.9
12 0.075 1.91 1.10 4.9

6.4.30 Contact walkout. (3.35) hen tested as specified in 4.7.31, contacts

shall not become dislodged from their normal position.

6.4.31 Power contacts.

6.4.31.1 Temperature life.(3.37)

6.4.31.1.1 Temperature life with contact loading. (3.37.1) When tested
as specified in 4.7.33.1, the contacts shall maintain their specified
locations as shown on figure 1 and there shall be no electrical dis-
continuity.

6.4.31.1.2 Temperature life. (3.37.2) When tested as specified in 4.7.33.2,
for 1,000 hours, connectors shall perform satisfactory and pass succeding
tests in the qualification test sequence.

6.4.32 Electrolytic erosion (Series IV). (3.38) %hen tested as specified
in 4.7.34, pin contact shall show no exposure of base metal due to electro-
lytic erosion. Corrosion deposits shall not be considered as defects.

6.4.33 Firewall. (3.39) Mated connectors shall prevent passing of a
flame through the connector for at leasr 20 minutes when tested in
accordance with 1.7.35. Purinp this period there shall be no flame from
outgassing or other causes on the end of the connector protected by the
fireqall. The current specified in 4.7.35, shall be applied for the first
five minutes without break in electrical continuity. During the next
minute the connector shall dcaw Tio more than 2 arpheres when-a test potential
of 100 to 125 Vac at 60 liz is applied between adjacent contacts and be-
tween contacts and the shell. (Class K)

6.4.34 Coaxial and Fiber Opt.cs Contacts. TBD

A-10

464

6.4.35 Marking. (3,43) Connectors and accessories shall be metal or ink
stamped with the manufacture's name or trademark, date. code. and the
following information, as applicable. Stamping shall be in accordance with
MILSTD-1285 where space permits. Metal stamping shall be accomplished be-
fore plating. The following examples are illustrative:

a. Identification.

D38999/40 W 25 31 p N
Specification Class Shell Insert Contact Polarization
sheet No. size arrangement style (Figures.l, 2, &3)

(A letter is
required for
all positions)

b. Lot number - 000010.

6.4.35.1 Contact location identification. (3.43.1) Contact locations shall
be identified as indicated on Figure TBD and the applicable military standard.
All positions shall be identified on the front and rear faces of the Insert.
except where space limitations make this impracticable. Location of contact
identifying characters shall be in close proximity to the holes but need not
be placed exactly where indicated on the standard.

6.4.36 Workmanship. (3.44) The connector shall be fabricated in a manner
such that the criteria for apperance, fit and adherence to specified tol-
erances are observed. Particular attention shall be given to neatness and
thoroughness of marking parts, plating, welding, soldering, riveting, stack-
ing, and bonding. The connectors shall be free from crazing, cracks, voids,
pimples, chips, blisters, pinholes, sharp cutting edges, burrs, and other
defects that will effect life, serviceability or appearance.

A-11

465

A?3?,7 Axe- 6y -o/ I

.165, .~

'~ 466

40

6,,/ cGeou/vo/A.'A'A'

A-1

'1"7

I-X8 "- ** - - ": z '

4.., ,.. 4.P -- . \

N J" .L .[',..,,,-

" "~~ " //0 ,'\

•~ ,, K. / "4,"/,

/// .

4 / . /

Figure 2. Recep~acle, Box (Crimp) (Socket Insert)

:4 67 1t

ITA

.,.,, __ ,
i/ . N' ,,,-' \

-- t'7?
i..

0 -. - ,,, , t v

I ' i . I " ",¢
.. 17

I Z50 /

___ //0
0...- :--- -.¢

Figure 3. P ugl-Straight-Crimp, Fin & Socket

A- 14

468

A-/. 39/

- '69. 0 ITA~7?IF6 ~ ~ e A.la ~ 4YeO

at - (! - I I., ,,, -~ .m (I

AidZ- Z'~/ r?,')CC599,''A

L4- -

34.9'7 c

A-I

4

Ada Programming Language

Because of space constraints in this Proceedings, the Ada

Programming Language Reference Manual dated July 1980 has

not been reproduced. If you are interested in obtaining

a copy, send your requests to:

Chairman,
DoD Management Steering Committee

for Embedded Computer Resources
Room 2A318
The Pentagon
Washington, D.C. 20301

- 470 -

*U.S.Government Printing Office: 1981 - 757-002/487

DAT
7

FILM---E

